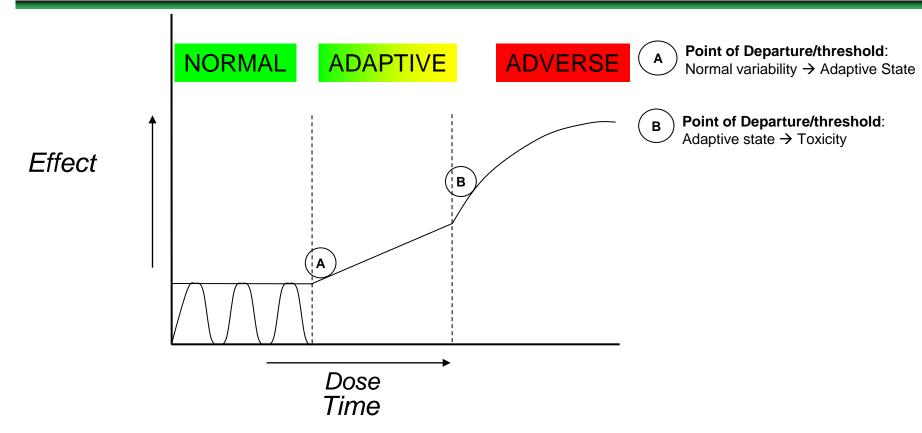


Dose Response and Thresholds in Endocrine Toxicity

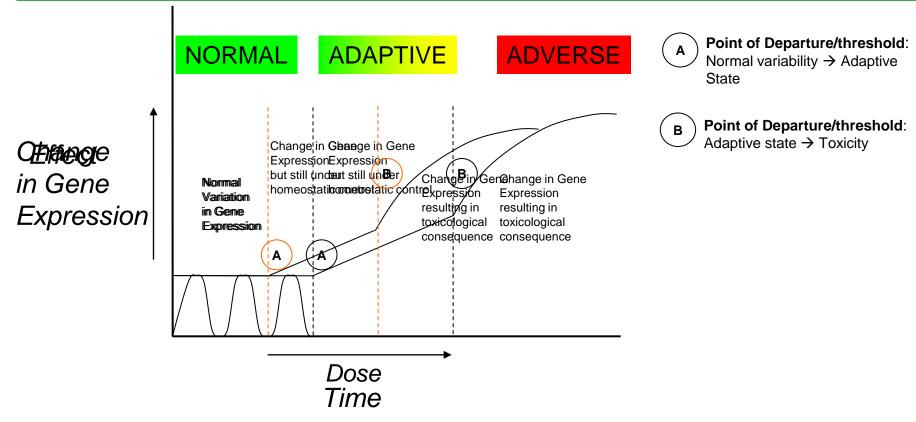
Helen Tinwell Research Toxicology

The Long-range Research initiative

Outline


- Introduction
- Cefic EMSG46 research project
- Flutamide data
- DNB data
- Conclusions
- Perspectives

The Challenges to Toxicity Testing (1)


➤ Do such points of departure (POD)/thresholds exist for Endocrine Disrupters?

The Challenges to Toxicity Testing (2)

- ➤ Do such points of departure (POD)/thresholds exist for Endocrine Disrupters
- ➤ What impact will toxicogenomic data have on our PoDs/thresholds?

CEFIC EMSG46: designed to address these challenges using phenotypic anchoring and focussing on the rat testis

RfP Title: Male Reproductive Health and Endocrine Toxicity: Application of Toxicogenomic Technologies to Develop a Mechanistic-Based Risk Assessment

EMSG 46: CHARACTERIZATION OF TESTICULAR TOXICITY USING TRADITIONAL AND OMIC TOOLS

3 year project (start: Dec 2007)

4 Partners (Industry and Acadaemia)

Steps necessary to meet the objective

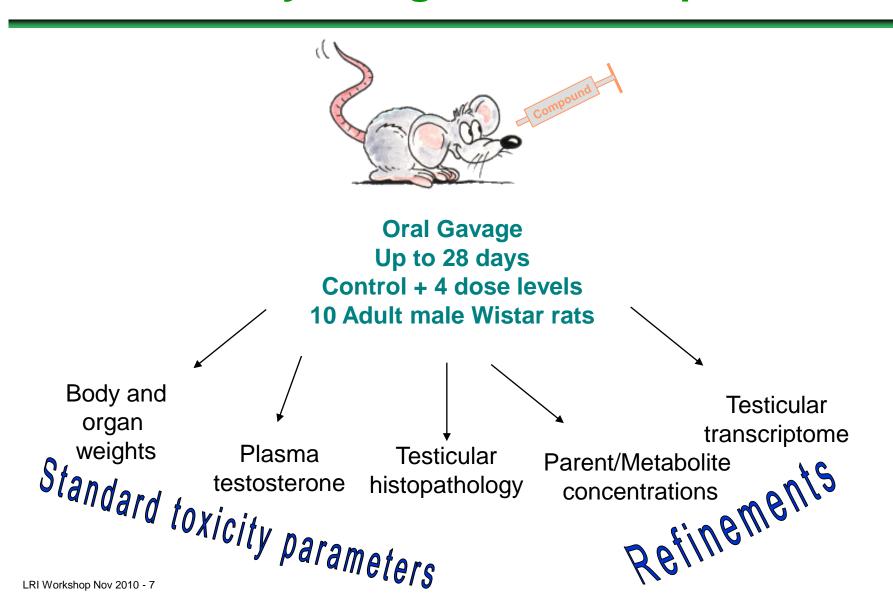
- Dose-response progression from normal variability → adaptive change →adverse toxicological effects
- 2. <u>Time dependent progression</u> from normal variability → adaptive change → adverse toxicological effects

Compounds:

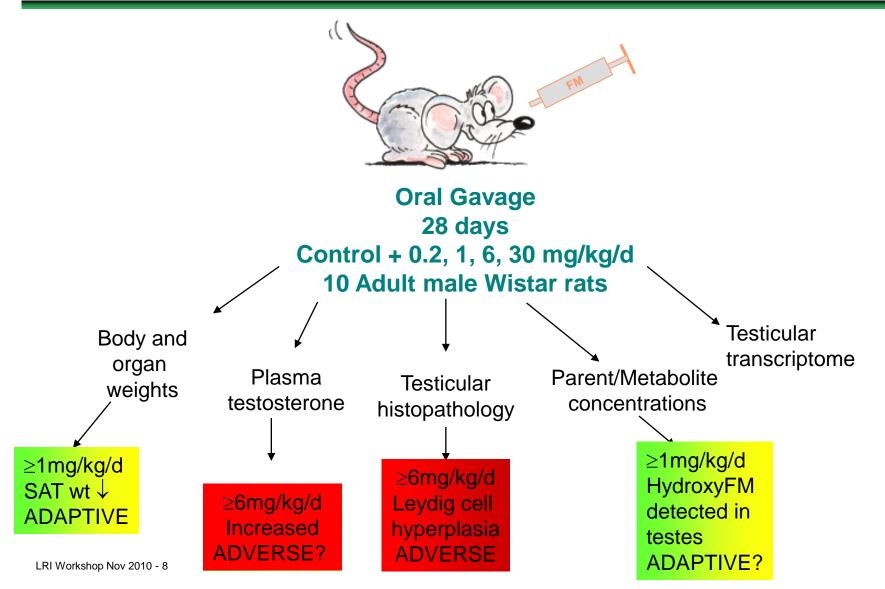
Flutamide (FM) a potent antiandrogen

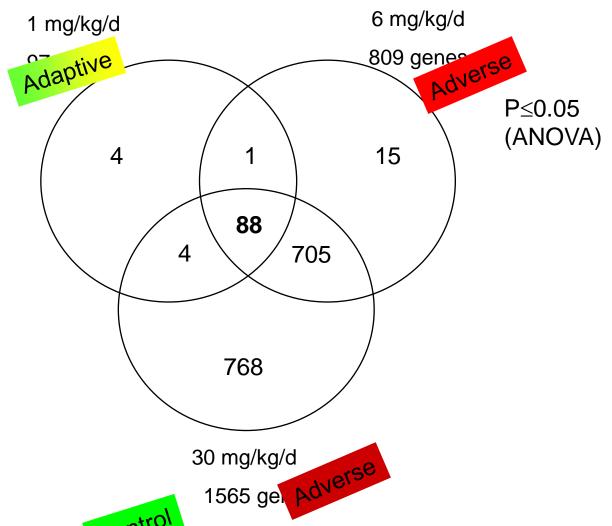
1,3 dinitrobenzene (DNB) a direct acting testicular toxicant

Ethinyl estradiol (EE) a potent estrogen

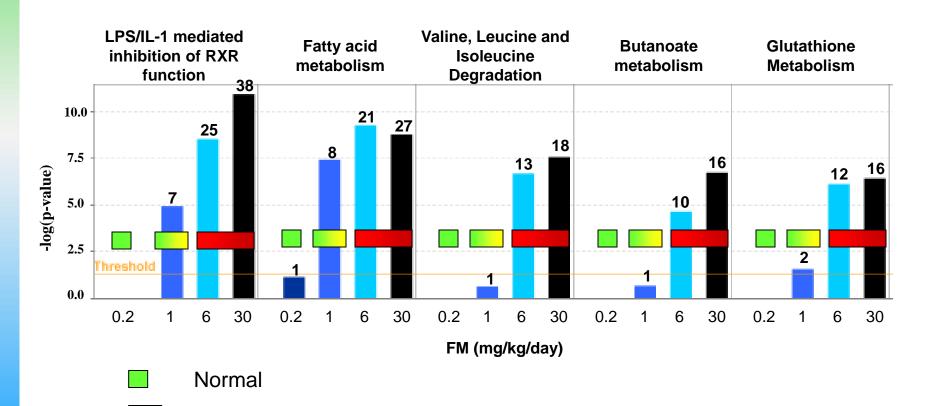

Dose levels:

Dose levels were selected based on consideration of all available literature.


General Study Design: Dose Response

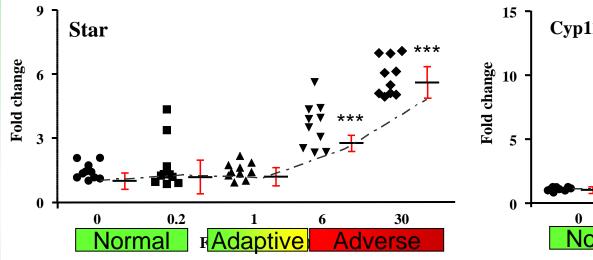

Dose Response Investigations

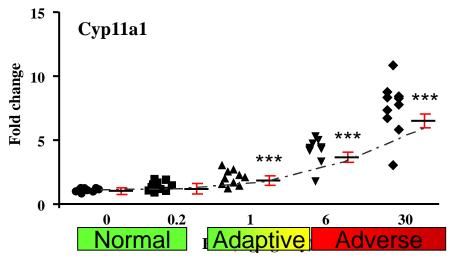
Flutamide: Transcriptomics - Microarray Data

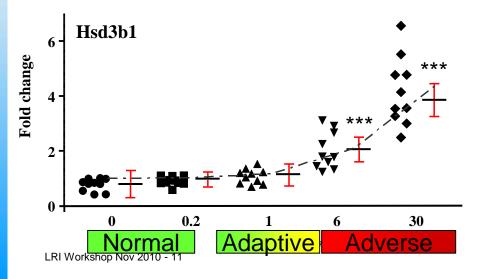

0.2mg/kg/d: Control genes were significantly deregulated

Transcriptomics - Functional Analyses

Top 5 Biological Processes Affected by 30mg/kg/day Flutamide

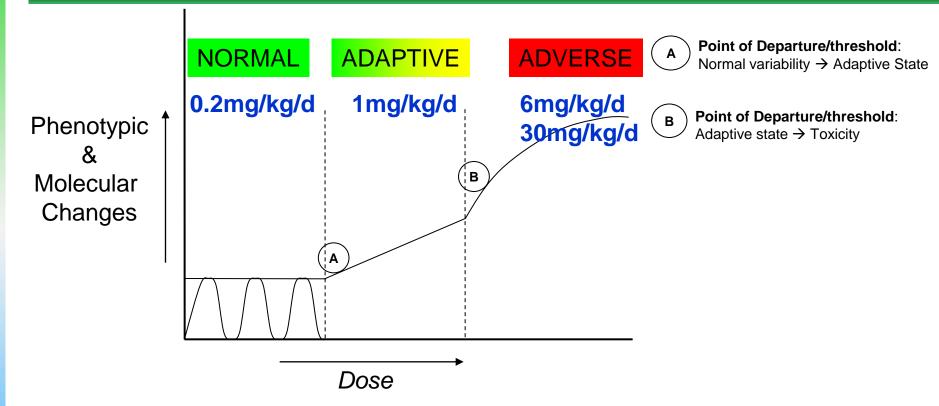

Adaptive


Adverse



The Long-range Research initiative

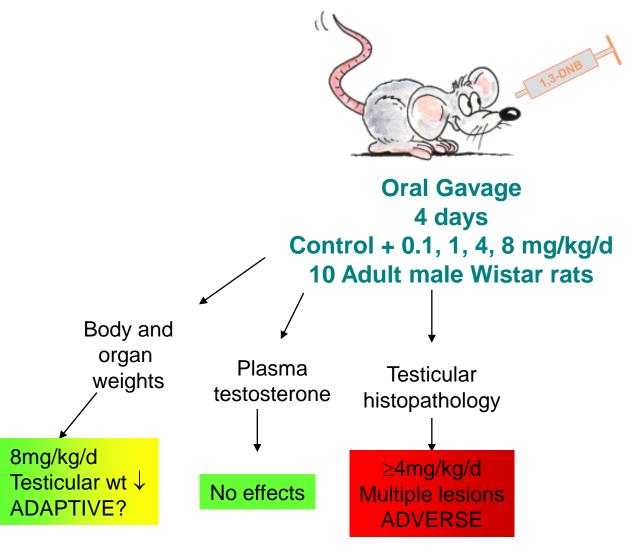
Flutamide: Transcriptomics - Lipid Metabolism



cefic

The Long-range Research initiative

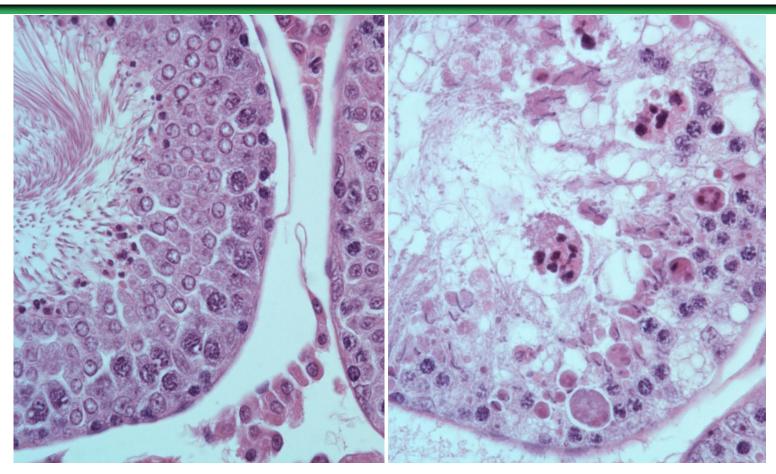
Flutamide: Dose Response Investigations


- ➤ Do such points of departure (POD)/thresholds exist for Endocrine Disrupters?
 - ➤ This appears to be the case for testicular toxicity induced by flutamide

1,3-Dinitrobenzene: Dose Response Investigations

The Long-range Research initiative

1,3-Dinitrobenzene: Testicular Lesions

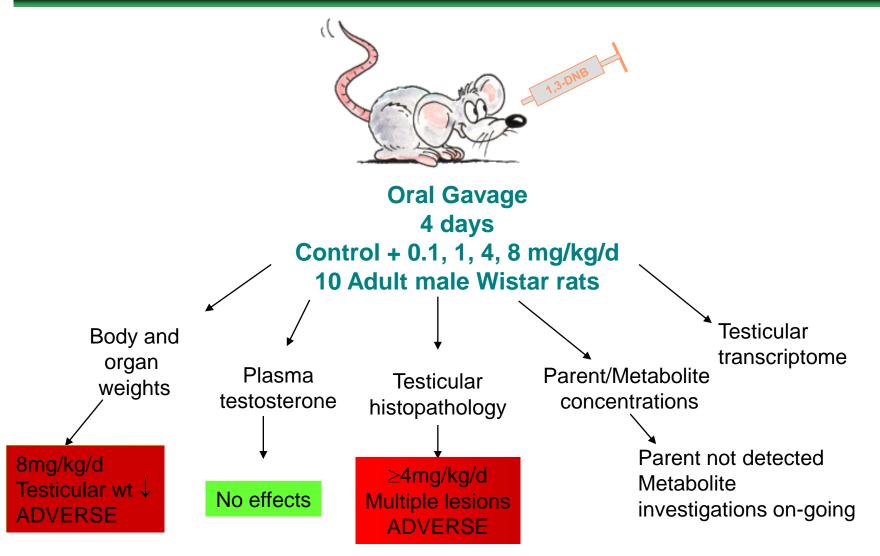

Incidence and severity of microscopic changes in the testis							
Dose group (mg/kg/day)	0	0.1	1	4	8		
Number examined	10	10	10	10	10		
	NORMAL	ERSE					
Germ cell degeneration/d	epletion						
Slight → Marked	0	0	0	9	10		
Multinucleated giant sper	matids						
Minimal → Moderate	0	0	0	7	10		
Sertoli cell vacuolation							
Minimal → Marked	0	0	0	9	10		

The Long-range Research initiative

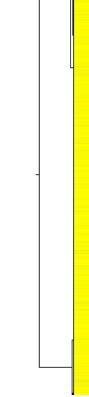
1,3-Dinitrobenzene: Testicular Lesions

Control

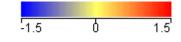
8 mg/kg/day


TESTIS (HE, x 400)

1,3-Dinitrobenzene: Dose Response Investigations



1,3-Dinitrobenzene : Transcriptomics - Microarray data


When applying ANOVA p-value of 0.0002:

Adverse day: 3918 genes significantly deregulated

O 1 / Control /kg/day: No significant changes in gene expression

Normalised Expression

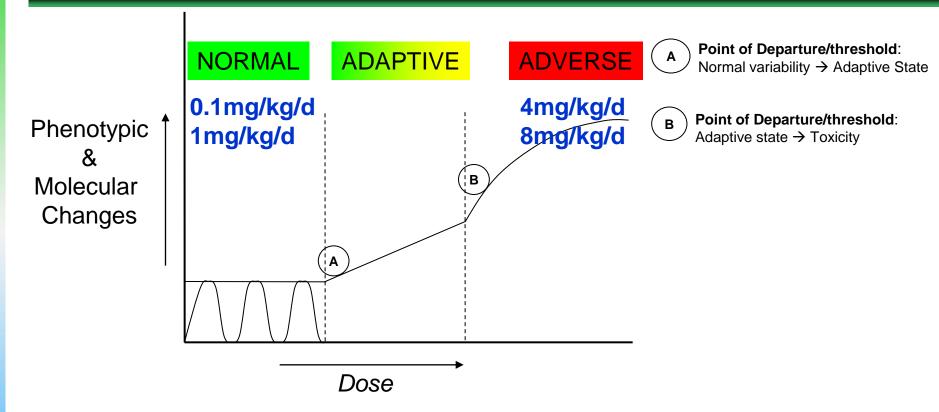
Molecular and Cellular Functions		
Name	p-value	# Molecules
Cell Cycle	3,69E-12 - 3,08E-02	238
Cell Death	2,06E-06 - 3,08E-02	367
DNA Replication, Recombination, and Repair	1,60E-05 - 2,81E-02	142
Gene Expression	4,23E-05 - 2,73E-02	277
Cellular Assembly and Organization	2,04E-04 - 2,85E-02	153

1,3-Dinitrobenzene: Transcriptomic Data – Cell Cycle Arrest

Mitotic Role of Polo-Like Kinase: Effects at 4mg/kg/day

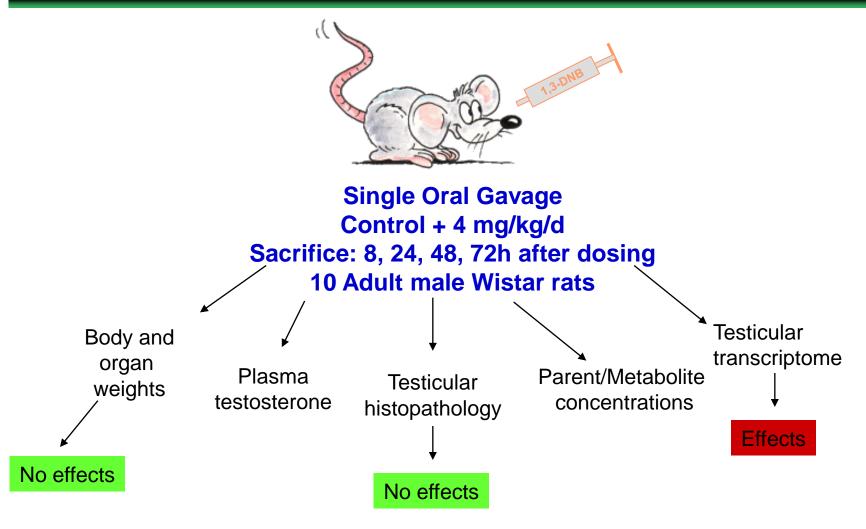
Down-regulation

Up-regulation

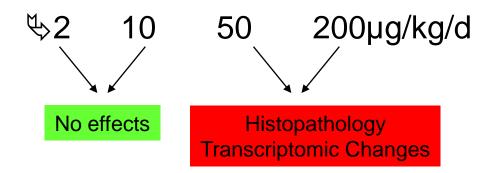

1,3-Dinitrobenzene: Transcriptomic Data – Cell Cycle Arrest

			NOF	RMAL/ -	
GenBank	Gene Description (gene symbol)			PTIVE?	ADVERSE
			0.1	1	4
NM_019296	cell division cyle 2 homolog A	Array	0.97	0.96	0.63***
INIVI_019290	(Cdc2a)	qPCR	0.94	0.97	0.48***
NM_00101274	wee 1 homolog	Array	1.02	1.02	1.23***
NWI_00101274	(Wee1)	qPCR	0.99	1.15**	1.14**
XM_229115	heat shock protein 1, alpha	Array	0.96	0.91	0.72***
AWI_229113	(Hsp90aa)	qPCR	1.01	1.02	0.66***
NIM 010240	serine/threonine kinase 2	Array	0.99	1.03	1.38***
NM_019349	(Slk)	qPCR	1.00	1 0.96 0.97 1.02 1.15** 0.91 1.02	1.19***
NM_00102541	protein phosphatase 2 (formerly 2A), regulatory subunit A, beta isoform	Array	1.01	0.97	0.71***
	(Ppp2r1b)	qPCR	1.02	0.96	0.65***
NM_00102474	cell division cycle 16 homolog	Array	0.95	0.95	0.79***
NWI_00102474	(Cdc16)	qPCR	0.95	1.00	0.69***
NM_031683	structural maintenance of chromosomes 1A	Array	0.99	1.00	1.21***
	(Smc1l1)	qPCR	1.09	1.19	1.36*
NIM 171002	cell division cycle 20 homolog	Array	1.01	1.02	0.78***
NM_171993	(Cdc20)	qPCR	0.96	0.99	0.61***
NM 017100	polo-like kinase 1	Array	0.99	0.98	0.77***
NM_017100	(Plk1)	qPCR	1.02	0.96	0.65***

1,3-Dinitrobenzene: Dose Response Investigations


- ➤ What impact will toxicogenomic data have on our PoDs/thresholds?
 - ➤Our testicular data for 1,3-DNB that the PoDs are similar between the adverse phenotypic effects and the molecular changes

1,3-Dinitrobenzene: Time Response Investigations



Conclusions (1)

Do points of departure (POD)/thresholds exist for Endocrine Disrupters?

Our Flutamide data indicate that thresholds can be identified, at least for testicular toxicity.

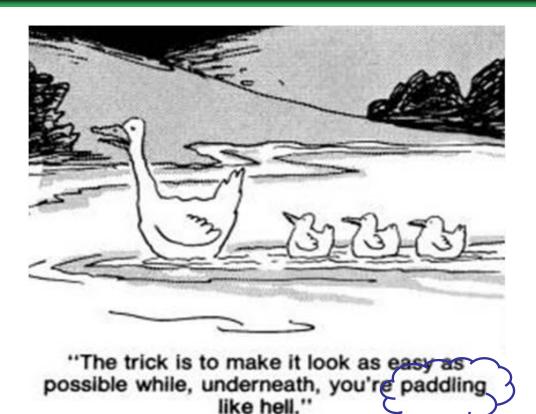
A similar profile was observed for Ethinyl Estradiol:

Conclusions (2)

What impact will toxicogenomic data have on our PoDs/thresholds?

- Transcriptomic data provide evidence that can support the identification of NOAELs
- However, transcriptomic data appear to be more suited to:
 - Providing information concerning the mode of action of a compound
 - Providing alerts in short-term studies as to what could be expected in the long-term (eg cancer bioassays) studies.

Perspectives


- Completion of the time response studies
- Publications
 - Flutamide dose response (submission end of Nov 2010)
 - DNB testicular effects (in preparation)
 - Statistical approaches (in preparation)

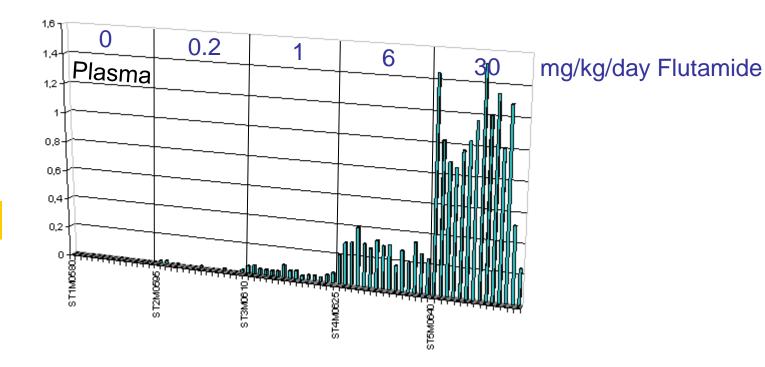
Acknowledgements

Sophie Ludwig
PhD Student

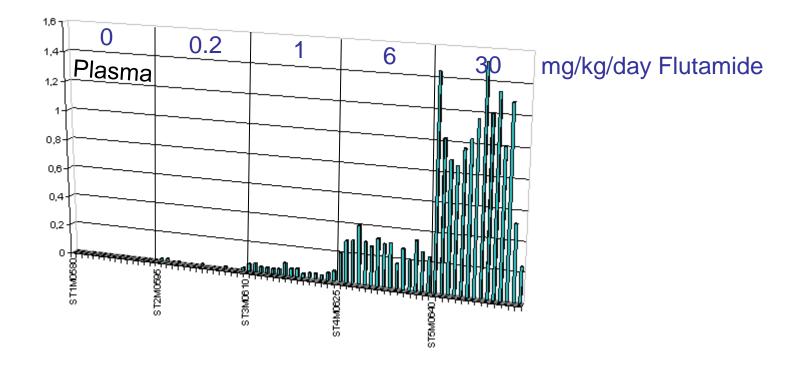
Thank you for your kind attention®

Spare/back-up slides

Flutamide: Testicular Lesions

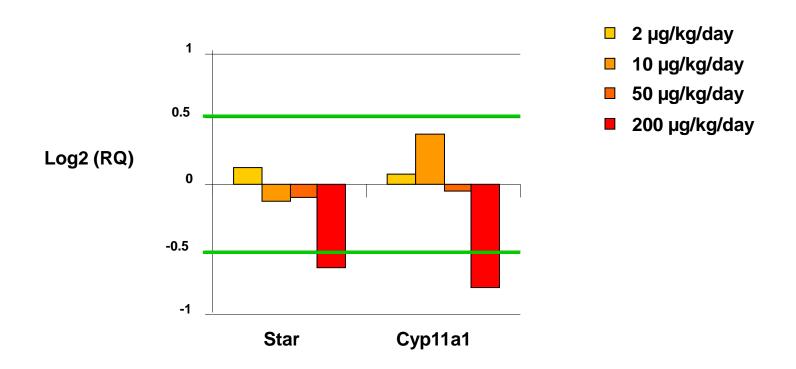


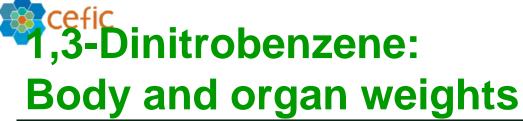
Microscopic changes in the testes: Diffuse Leydig cell HYPERPLASIA							
Dose group (mg/kg/day) 0 0.2 1 6 30							
	NORMAL ADAPTIVE ADVERSE						
Minimal	0	0	0	10	2		
Slight	0	0	0	0	6		
Moderate	0 0 0 0						
Total 0/10 0/10 10/10 10/10							



µg/ml

Ethinyl Oestradiol: Histopathologie


Microscopic changes: TESTIS							
Dose group (µg/kg/day)	0	2	10	50	200		
Number examined	10	10	10	10	10		
	Leydig cell atrophy: diffuse						
Minimal	0	0	0	3	2		
Slight	0	0	0	0	3		
Moderate	0	0	0	0	2		
Marked	0	0	0	0	2		
Total	0	0	0	3	9		


Ethinyl Oestradiol: Histopathologie

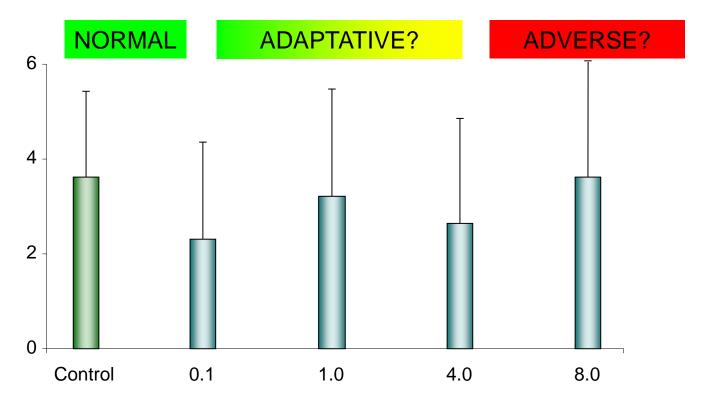
Microscopic changes: TESTIS							
Dose group (µg/kg/day)	0	2	10	50	200		
Number examined	10	10	10	10	10		
	Leydig cell atrophy: diffuse						
Minimal	0	0	0	3	2		
Slight	0	0	0	0	3		
Moderate	0	0	0	0	2		
Marked	0	0	0	0	2		
Total	0	0	0	3	9		

Ethinyl oestradiol: Transcriptomique

Expression dans les groupes traités à l'EE

	_				
	_		1,3-Dinitr	obenzene	
	Control	0.1 mg/kg/d	1 mg/kg/d	4 mg/kg/d	8 mg/kg/d
Body weight (g)					
Initial	409±15	409±16	410±15	411±17	401±19
Terminal	421.7±19.6	419.3±18.6	423.3±18.8	420.3±16.6	407.0±24.4
% organ to body weight					
Liver	3.47 ± 0.25	3.53 ± 0.30	3.58 ± 0.30	3.62 ± 0.37	3.53 ± 0.24
Absolute organ weight (g)	NORMAL		ADAPTATIVE	≣?	ADVERSE?
Testis	1.84 ± 0.53	1.80±0.14	1.73±0.15	1.74±0.28	1.54 0.27*
Epididymis	0.56 ± 0.06	0.56 ± 0.06	0.53 ± 0.05	0.53 ± 0.06	0.52 ± 0.05
Prostate	0.55 ± 0.12	0.48 ± 0.10	0.47 ± 0.09	0.46 ± 0.10	0.49 ± 0.09
Seminal Vesicle	1.7 ± 0.4	1.5 ± 0.3	1.5 ± 0.3	1.4 ± 0.3	1.5 ± 0.3
Adrenal glands	0.0573 ± 0.0088	0.0562 ± 0.0090	0.0581 ± 0.0108	0.0574 ± 0.0101	0.0530 ± 0.0113
Pituitary glands	0.0100 ± 0.0019	0.0094 ± 0.0018	0.0107 ± 0.0027	0.0097 ± 0.0014	0.0105 ± 0.0033

^{*}p<0.05.

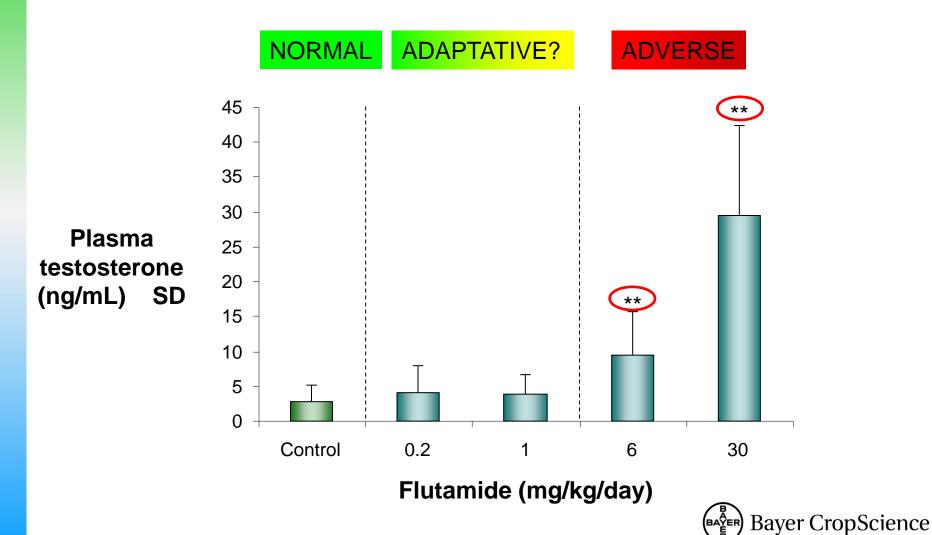


No effects on testosterone levels after 4 days dosing with 1,3-DNB

Testosterone (ng/mL) SD

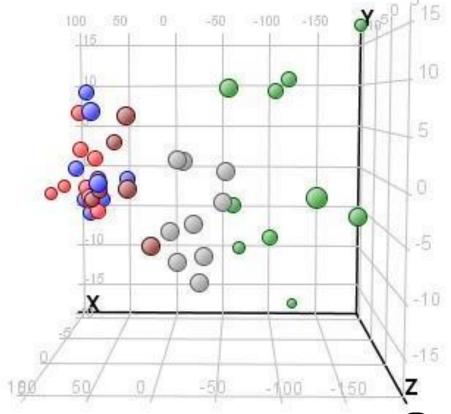
Dose DNB (mg/kg/day)

	Control	0.2 mg/kg/d	1 mg/kg/d	6 mg/kg/d	30 mg/kg/d
Terminal Body weight (g)	416.9±29.4	417.2±29.0	417.9±21.0	412.6±25.9	401.1±26.2
% organ to body weight					
Liver	3.53±0.22	3.57±0.28	3.54±0.26	3.64±0.16	4.19±0.18**
	NORMAL	ADAD		ADVE	RSE?
Absolute organ weight (g)	NONIVIAL	ADAP	TATIVE?		INOL:
Testis	1.83±0.11	1.78±0.14	1.78±0.24	1.85±0.23	1.98±0.52
Right Epididymis	0.53±0.04	0.48 ± 0.03	0.47±0.08	0.40 0.04**	0. 38 0.05**
Prostate	0.44±0.12	0.39 ± 0.09	0.38±0.15	0.29 0.07**	0. 21 0.05**
Seminal Vesicle	1.39±0.30	1.29±0.32	1.13 0.258*	0. 90 0.22**	0. 55 0.19**
Adrenal glands	0.051±0.005	0.052±0.009	0.052±0.007	0.055±0.008	0. 061 0.011*
Pituitary glands	0.011±0.002	0.011±0.002	0.011±0.001	0.011±0.001	0.012±0.002


*p<0.05, **p<0.01.

Plasma Testosterone

Transcriptome principal component analysis

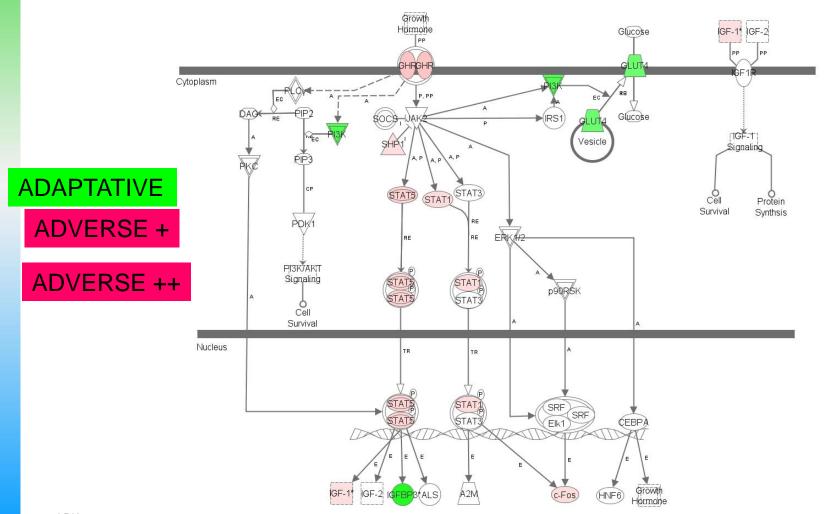

NORMAL

ADAPTATIVE

ADVERSE

Color by treatment

- 0 mg/kg/day
- 0.2 mg/kg/day
- 1mg/kg/day
- 6mg/kg/day
- 30mg/kg/day



Toxicity pathway analysis

Growth Hormone Signaling

30 mg/kg/day FLUTAMIDE

