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Endpoint and Purpose

Endpoint : skin sensitization potency in the LLNA, TG 429, expressed as
probability distribution of LLNA pEC3, very closely following 4 potency classes:
nonsensitizers (NS), weak (W), moderate (M), and combined strong and extreme

(S) sensitizers.
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Purpose
— Hazard

P(LLNA=NS, W, M, S| evidence)

— classification and labeling under the GHS C&L scheme
— in quantitative risk assessment especially when combined with in vivo evidence on analogues.

— In addition to data integration BN ITS/DS develops an efficient testing strategy. This IDS guides
testing by Value of information and measures progress by uncertainty reduction.



Rationale of the Bayesian Network approach

AOP structure — biological knowledge about skin Allows interpretation in the biological context
sensitization
1. AOP sequence of events encoded chemical specific.

2. Cysteine and Lysine are treated as two
independent molecular initiating events (MIEs).

3. Bioavailability consideration is applied to both in
vivo and in vitro assays

Biology ( KE 1,2,3) and chemistry data directly Optimizes potency prediction,
encoded Eliminates uncertainty propagation due to use of
individual assays prediction models.

Individual assays co-dependencies in the Reduces false positives and false negative
information they provide are accounted for (TIMES, classifications
Cys reactivity, hCLAT)

Can build hypothesis with partial data Data outside applicability domain can be eliminated
Flexible
Quantifies uncertainty Facilitates consistent decisions,

Guides testing strategy using Vol
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The structure of the BN ITS model represents abstracted AOP with the aim to follow
sequence of the mechanistic events in the AOP.



Limitations

BN ITS-3 system requires biological data input of reliable consistent
quality. The data need to come from within the applicability
domains of the individual assays:

* Invitro assays are applicable to test chemicals soluble in either water or DMSO and test chemicals
that form a stable dispersion;

e Highly cytotoxic test chemicals cannot be tested in the in vitro assays

* Prohaptens: varying metabolic capacity: DPRA < hCLAT < Keratinosens. Possible underestimation of
potency.

 Prehaptens: experimental assays (DPRA, KS, hCLAT) results may yield underestimation of potency.

* Metals fall out of the applicability domain of the DPRA, since they are known to react with proteins
with mechanisms other than covalent binding



Predictive capacity

Observed ->
GHS Training set n=147 Test set n=59
C&L Class | NS(39) | W(39) | M(40) | S(29) Class | NS(14) | W(18) | M(12) | S(15)
none NS 36 2 1 0 NS 14 0 0 0
1B W 2 32 3 3 W 0 16 3 0
M 0 3 38 5 M 0 2 9 2
1A S 1 2 8 21 S 0 0 0 13
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Process to derive prediction 1
gathering evidence

Prediction of physico-chemical properties of chemicals
Prediction of TIMES SS:

— Potency based on the highest potency among parent molecule and predicted metabolites
— Assessment of potential of metabolic activations (prohapten) and autooxidation (pre-hapten)
— reactivity alerts, direct Michael Acceptor

Completeness of evidence on MIEs check: Cysteine and Lysine reactivity?

Assessment of applicability domains:

— Pre or prohapten data DPRA, KS and hCLAT data are examined with caution. Hypothesis w/o
these data is considered.
— lonization: chemicals that are 100% ionized considered not suitable for in vitro assays.

— Water solubility at pH=7 cutoffs for DPRA, KeratinoSens™, hCLAT

Ws at pH=7 [M/I] DPRA Keratinosens hCLAT
<2.5e-08 X X X
2.5e-08 - 1.7e-04 ok X X
1.7e-04 - 2.1e-04 ok ok X
>2.1e-04 ok ok ok




Process to derive prediction 2
prediction

e Integration of all the in domain evidence and prediction of the pEC3 probability distribution
— Analysis of individual evidence and its combinations predictions

 Post processing step of probability distribution correction for Michael acceptors, if applicable.

e Conversion of probability distribution to Bayes Factors for final interpretation and decision.

P(H = x|e)/P(H = not_x|e) posterior odds

P(H|x)/P(H = not_x) prior odds
Bayes Factor Strength of evidence
<1 Negative ( supports alternative)
1-3 Barely worth mentioning ( weak)
3-10 Substantial
>30 Strong

Jeffereys, 1961

Prior distribution as in the Posterior distribution predicted
training set by BN ITS-3

PrNS) | Prew) | PreM) | Pr(S) | Prns)y | Prew) | Provy | Prs) | B(NS) | B(w) | B(M) | B(S)
0.27 0.27 0.27 0.20 0.04 0.29 0.37 0.30 0.11 1.11 1.60

Bayes factors




Octanenitrile 124-12-9-C(#N)CCCCCCC LLNA EC3% ND, nonsensitizer

Protein
EC150 EC200 CVv75 DPRAFys DPRA‘Lys KEC1.5 KEC3 IC50 TIMES-M Log D Binding ws@ fion
depletion | depletion @pH7 % pH=7
10000 10,990_ 3430 D 3.4 2000 1512 2000 1 2.72 79 0.013 0.06
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Octanenitrile-124-12-9 C(#N)CCCCCCCO LLNA EC3% ND, nonsensitizer

Bayes Factor
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