Sensitizer potency prediction based on Key event 1 + 2 Andreas Natsch, Givaudan Schweiz AG Presented by: David Basketter, DABMED consultancy

engage your senses

Description of the information sources and readouts used

- Peptide reactivity (Key event 1):
 - LC-MS evaluation of direct peptide modification
 - Molecular weight of adduct to interpret possible reaction mechanism
 - Peptide depletion after 24 h
 - Dose-response of peptide depletion at earlier time-points
 - Kinetic rate constant derived from the multiple depletion values
- KeratinoSens[™] (Key event 2, Keratinocyte activation):
 - Positive/negative rating according prediction model
 - $EC1.5_{KS}$ / $EC2_{KS}$ / $EC3_{KS}$ concentration for 1.5/2/3-fold luciferase gene induction
 - IC50_{KS} concentration for 50% reduction in viability
- Physicochemical parameters:
 - cLogP, Vapor pressure

Underlying rationale: A) Global model

- LLNA EC3 best available parameter for in vivo potency
 - linearized by Log transformation = pEC3
- Quantitative in vitro data partly correlate to LLNA potency
 - dose response in KeratinoSens™
 - rate constant in peptide reactivity
 - All data can be linearized by Log transformation
- Multiple regression uses most predictive combination of linear parameters
 - Treats all chemicals equal
 - Fixed coefficients over whole potency range

R² adjusted (%)	p value
51.7	< 0.0005
43.6	< 0.0005
42.5	< 0.0005
44.8	< 0.0005
33.5	< 0.0005
	R² adjusted (%) 51.7 43.6 42.5 44.8 33.5

Underlying rationale: B) Global vs. mechanistic domain models

- The concept of grouping of chemicals is widely accepted (e.g. used in OECD toolbox)
- Chemicals should be predicted in domains if:
 - They can be grouped in domains with related chemicals
 - Related chemicals have been tested in vitro and in vivo

Chemical used to develop and test the approach

Process applied to derive the prediction/assessment

• Global model:

- Regression equation can the be used to make predictions
- Rate constant peptide reactivity highest influence
- Followed by luciferase from KeratinoSens

- Local models: Multiple regression with leave-one-out analysis
 - Each chemical is predicted with the remaining chemicals in dataset as training set
 - Avoids bias due to too small groups

Predictive capacity of the approach

Domain models – leave one-out analysis.

Domain models allow fold misprediction of 2 – 3 fold for many chemicals

This may be more useful as point of departure in risk assessment as compared to 10-fold potency classes

 In general prediction by global model somewhat less accurate as compared to local model

Domain ¹⁾	N	R ² -adj. of best model (<i>p</i> -value)	Fold-misprediction domain model	Fold- misprediction global model
Michael acceptors	44	58.4% (< 0.0005)	2.26	3.22
Addition-elimination	19	85.9% (< 0.0005)	2.60	3.43
Epoxides	16	81.2% (< 0.0005)	1.97	2.88
Aldehydes	28	43% (0.001)	3.16	3.26
pre-quinone-domain	32	48.2% (< 0.0005)	4.54	6.45

Predictive capacity of the approach

- Combined view of predictions with domain models (open triangels) and global predictions according (closed diamonds).
 - Chemicals attributable to domain predicted by domain model.
 - Remaining chemicals predicted by global model.
- Solid line indicates regression line
- dashed line indicates line of identity
- dotted lines indicate the area of chemicals with ≤ 5 fold misprediction.

Limitations in the application of the approach:

- Applicable for chemicals with MW < 500 and with a cLogP < 5, excluding polymers and mixtures.
- Phase I metabolic pathways are not fully represented
- Full dynamic range for very strong and extreme sensitizers not represented
- Quantitative reactivity of amine reactive chemicals not fully represented
 - No kinetic assay for amine reactive chemical implemented
- Only effects based on key events 1 + 2 measured; impact of other steps in prediction not reflected
 - But redundancy of data detected: Adding hClat AND KeratinoSens to peptide reactivity gives marginal improvement as compared to using either of the two.

Conclusions

- Quantitative readouts from Peptide reactivity and Nrf2-induction can partly explain sensitization potency
- Predictions are most accurate within domains of chemicals reacting with similar mechanism
- Within several domains, predictions with an average 2-fold misprediction are possible
 - Working on a continous scale may be more useful as point of departure in risk assessment as compared to predicting 10-fold potency classes
- There is also a correlation to human data (not shown here, see paper)
 - However, prediction of human data by in vitro data and LLNA is limited, which may be partly due to the very heterogeneous nature of the available human data.

Thank you

Contact

Andreas Natsch, Givaudan Schweiz AG, andreas.natsch@givaudan.com

Givaudan

Confidential business and proprietary information of Givaudan, may not be copied or distributed to anyone without the express written permission of Givaudan