THE BIOACCUMULATION ASSESSMENT TOOL

SETAC North America
Minneapolis, MN
November 13, 2017

LIISA TOOSE¹, JON ARNOT¹, JAMES ARMITAGE¹, KAREN FOSTER¹, MICHELLE EMBRY²
¹ Arnot Research and Consulting (ARC) Inc. ² HESI
Outline

Rationale & Objectives

Bioaccumulation Assessment Tool (BAT) Overview

Examples of Input and Output

Summary
Rationale

Why develop a tool?

Various regulatory programs for B assessment, e.g.:
- REACH, TSCA, CEPA, CSCL
- Various **metrics** for B assessment
 - Kow, lab BCF, lab BMF, field BMF, field BAF, field TMF, etc
- Various **criteria (thresholds)**, e.g., REACH Annex XIII

Fig from Gobas

| 5,000 | 2,000 |
| 1,000 |
| 500 |
| 1 |
General Project Objectives

To develop a spreadsheet tool which can be used to:

- **collect**, **evaluate** and **integrate** various lines of evidence (LOE) relevant to B-assessment (i.e., TK, ADME data streams)

- provide **consistent** and **transparent** results by means of a quantitative weight of evidence (QWOE) approach.

- **guide** and **inform** B-assessment decision-making
Quantitative Weight of Evidence (QWOE)

B-metric

Threshold

Relevance

Outcome

Reliability

Weighted Outcome

nB / B / vB

* Data Evaluation Template
Conceptual overview (aquatic)

1. Initialization
 - Define B and vB thresholds

2. Chemical data input
 - Molar mass
 - K_{ow}
 - pKa (ionogenic)

3. Biotransformation rates LOE, DETs
 - in vitro → IVIVE
 - in silico

4. Bioaccumulation LOE input and generated, DETS

5. Output
 - B metrics summary (Study & BAT-generated LOEs -standardized)
 - Compare LOE value against defined thresholds
 - Compare LOE value against benchmark chemicals (figures)
 - Reliability Scores (DETs)
 - WOE scores
 - Overall QW/OE
 - Concordance scores
 - Summary figures
 - Summary report

The BAT
- Model calculated B metrics derived under defined conditions (additional LOE)
 - BCF/BMF Lab conditions
 - Generic Lab conditions
 - Generic Field conditions
 - Aquatic/terrestrial

Integrating all lines of evidence and calculating summary results, QW/OE, concordance, etc.
1. Initialization
2. Chemical Data Input

Minimum input:
1. MW
2. K_{OW}
3. K_{OA} (or K_{AW})

Tiered approach for inputs of partitioning data; if available or calculated if not e.g., k_{MW}, K_{SW}, K_{PW}, etc. ppLFERs
3. Biotransformation Rates

Default → “no biotransformation”

Collect biotransformation information such as:

- In Vitro S9, hepatocyte or microsome studies
 - Fish and Rodent
 - *In vitro-in vivo* extrapolation → k_M
- Biotransformation rate QSARs
 - Link to EPISuite (others)

Study conditions
Key values
DETs assess study methods → reliability
3. Biotransformation rates

Data collection and evaluation
4. Bioaccumulation Studies

Collect information, enter (if available):

- Laboratory BCF
- Laboratory BMF
- Field TMF
- In silico BCF, BMF, BAF

Study conditions
Key Values
DETs → reliability

- BAT generated results
- Simulated Lab and Field, aquatic and terrestrial
 - BCF, BAF, BMF, TMF
4. Bioaccumulation Studies

sample: Lab BCF

BAT simulates
- Experiment
- Generic lab
5. Output

Evaluate and Integrate

Each B assessment metric outcome → assigned value reliability → assigned value sorted by relevance

QWOE to determine B-classification outcome
5. Output

Summary plots

Benchmarking

Formatted PDF

Summary

Bioaccumulation Assessment Tool
developed by ARC Inc.
with funding from CEFIC
Prepared by: Ulisa Toose
Organization: ARC Inc

Bioaccumulation Assessment Report

Project Summary
11/13/2017 Hypothetical Neutral 123-45-6

Results Summary
Summary

BAT:

- User-defined relevance for each B metric and threshold value
- Collect and generate Lines of Evidence for a single chemical
- Evaluate data reliability using LOE-specific criteria (based on TGD)
- Compare B metrics against user-defined thresholds
 - “B classification outcome, nB, B, vB”
- Integrates Relevance, Reliability and Outcome of the assessments
- Generate summary output, figures, benchmarking, report
Acknowledgements

We have received invaluable feedback from the BAT Advisory Team (BAT-AT):

Johanna Peltola-Thies (ECHA)
Caren Rauert (UBA)
Ian Doyle (UK Environment Agency)
Naoki Hashizume (CERI)
Yoshiyuki Inoue (CERI)
Mark Bonnell (ECCC)
John Nichols (EPA)

Karen Eisenreich (EPA)
David Tobias (EPA)
Kent Woodburn (Dow)
Sami Belkhiria (Dow)
Sylvia Jacobi (Albemarle Europe sprl)
Florian Schmidt (BASF)
Marie-Helene Enrici (Solvay)

Financial support from CEFIC-LRI