ECO39: Recent progress on toxicokinetic-toxicodynamic models

Roman Ashauer (University of York, UK) & Tjalling Jager (DEBtox research, NL)
Toxicokinetic-Toxicodynamic (TKTD) models

Physical-chemical properties
- Toxicant concentration in medium
- Toxicant concentration in animal
- Toxicant concentration at target

Toxicokinetics
- Uptake, Biotransformation, Distribution, Elimination

Toxicodynamics
- Damage accrual & damage recovery, Energy allocation, Physiological compensation, Thresholds

Mechanism & mode of toxic action (also known as Adverse Outcome Pathways)
- Toxicant interaction with target
- Cellular response
- Organ response
- Organism response

Traits affecting toxicokinetics

Traits affecting toxicodynamics

Ashauer & Escher (2010) JEM, Rubach et al. (2011) IEAM
TKTD models for environmental risk assessment

Environmental risk assessment of pesticides

- Toxicity tests & models (TKTD models)
- Population & community models
- Field studies & landscape models

Ecological realism

Modified from: European Food Safety Authority (EFSA) Journal, 2013. 11(7)

https://leanpub.com/guts_book
EFSA opinion on TKTD models

“The GUTS model and the Lemna model are considered ready to be used in risk assessment.”
Predict effects from time-variable exposure

- For example as proposed in the recent EFSA scientific opinion on TKTD modelling for aquatic risk assessment of pesticides.
From GUTS to the EFSA opinion on TKTD models

2010 TKTD workshop

Ring-test

2015 TKTD workshop

“GUTS”

2010 TKTD workshop

Ring-test

2015 TKTD workshop

“GUTS”

2010 TKTD workshop

Ring-test

2015 TKTD workshop

“GUTS”

2010 TKTD workshop

Ring-test

2015 TKTD workshop

“GUTS”
ECO39.1 – The GUTS e-book

Modelling survival under chemical stress

A COMPREHENSIVE GUIDE TO THE GUTS FRAMEWORK

Tjalling JAGER and Roman ASHAUER

https://leanpub.com/guts_book
The GUTS e-book

Contents

Preface
About this book vii
Support on the web vii
About the authors viii
Acknowledgements viii
Disclaimer ix

1 Introduction 1
1.1 Relevance of survival 1
1.2 The descriptive approach 2
1.3 General aspects of TKTD modelling 4
1.4 Individual tolerance versus stochastic death 7
1.5 History of GUTS 9
1.6 Structure of this book 15

2 Description of GUTS 17
2.1 The full GUTS model 18
2.2 Special cases and parameters explained 21
2.3 Statistics 25
2.4 Initial parameter values and identifiability 34
2.5 Thoughts on optimal test design 36

3 Mathematical treatment 41
3.1 The full GUTS model 41
3.2 The reduced GUTS model 46
3.3 Special cases 48
3.4 Notes about implementation 51
3.5 Statistics 52

4 Case study: dieldrin in guppies 63
4.1 Data set and modelling platform 63
4.2 Selecting models and starting values 64
4.3 Fitting the models to the data 67
4.4 Intervals on model parameters 69
4.5 Intervals on model curves 74

5 Case study: propiconazole in amphipods 85
5.1 Data set and modelling platform 87
5.2 Fits of the reduced models 88
5.3 Predictions and validation 91
5.4 Including body-residue data 94

6 Use cases 97
6.1 Dose-response modelling and LC50 calculation 97
6.2 Oil pollution in the marine environment 98
6.3 Pesticides in aquatic systems 100
6.4 Intermittent pesticide exposure in small terrestrial mammals 103
6.5 Opportunities within REACH 104
6.6 Predicting toxicity of untested compounds via read-across 106
6.7 Identifying or confirming mechanism of action (grouping into category) 109
6.8 Extrapolation across species 110
6.9 Mixture toxicity and sequential or time-variable exposures to multiple toxicants 110
6.10 Sub-model in individual-based population models 111

7 Ring test 113
7.1 Data provided to modellers and task set 113
7.2 Results and discussion 116
7.3 Conclusions 121
7.4 Ring-test participants 124
7.5 Brief description of software platforms 124

8 Model evaluation 133
8.1 Conceptual model evaluation 134
8.2 Implementation verification 135
8.3 Data evaluation 135
8.4 Model output verification (calibration) 135
8.5 Model analysis (sensitivity and uncertainty) 137
8.6 Model output corroboration 143
8.7 Evaluating model quality for TRA 145

9 Outlook 149
9.1 Us for unified 149
9.2 Big open research questions 149
9.3 Developments in regulatory setting 150
9.4 What do we need? 151

Bibliography 151
Glossary 163
Appendices 165

A Model extensions 165
A.1 Extensions of TK 165
A.2 Extensions of the damage module 168
A.3 Mixture toxicity 169
A.4 Extensions for the death mechanism 173
A.5 Extrapolations 179
A.6 Rules for starting values 181
A.7 Identifiability 182
Physiological modes of action across species and toxicants: the key to predictive ecotoxicology†

Roman Ashauer*ab and Tjalling Jagerc

As ecotoxicologists we strive for a better understanding of how chemicals affect our environment. Humanity needs tools to identify those combinations of man-made chemicals and organisms most likely to cause problems. In other words: which of the millions of species are at risk from pollution? And which of the tens of thousands of chemicals contribute most to the risk? We identified our poor knowledge on physiological modes of action (how a chemical affects the energy allocation in an organism), and how they vary across species and toxicants, as a major knowledge gap. We also find that the key to predictive ecotoxicology and ecotoxicological risk characterization of chemicals and complex mixtures is the physiological mode of action.
ECO39.2 OBJECTIVES

Development of user-friendly, robust GUTS software

- User-friendly & robust software (end-user input via stakeholder workshop)
- Freely-available, incl. source code: GNU GPLv3 (open-source software)
- Thoroughly tested & benchmarked against ring-test data
- With user manual
TKTD models for sub-lethal effects
EFSA opinion on TKTD models

“The GUTS model and the Lemna model are considered ready to be used in risk assessment.”

“…the DEBtox modelling approach is currently limited to research applications. However, its great potential for future use in prospective ERA for pesticides is recognised.”
DEBtox for growth & reproduction

Making Sense of Chemical Stress
Applications of Dynamic Energy Budget Theory in Ecotoxicology and Stress Ecology

Tjalling Jager
Stress type (pMoA)

1. Feeding & assimilation
2. Maintenance
3. Growth
4. Reproduction

DEBtox: physiological mode of action (pMoA) is key

<table>
<thead>
<tr>
<th>Baseline toxicants</th>
<th>Specific toxicity</th>
<th>Metals</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral organics</td>
<td>Fluoranthene</td>
<td>Potassium</td>
<td>Toxic cyanobacteria</td>
</tr>
<tr>
<td>Benz(a)-fluoranthene</td>
<td>Pyrene</td>
<td>Calcium</td>
<td>pH (ocean acidification)</td>
</tr>
<tr>
<td>Neutral organics</td>
<td>Acetone</td>
<td>Sodium</td>
<td>Produced water</td>
</tr>
<tr>
<td>Neutral organics</td>
<td>Diquat</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Neutral organics</td>
<td>Pentachlorobenzene</td>
<td>Mercury</td>
<td></td>
</tr>
<tr>
<td>Phenols</td>
<td>2,4-dichlorophenol</td>
<td>Aromatic triazine</td>
<td></td>
</tr>
<tr>
<td>Imidazoles, carbamate esters</td>
<td>Carbendazim</td>
<td>Aldicarb</td>
<td></td>
</tr>
</tbody>
</table>
| Quinone carbamate ester | Turbutyl | Men

1. Feeding & assimilation [A]
2. Maintenance [M]
3. Growth [G]
4. Reproduction [R]
ECO39: What have we achieved so far?

- Ring-test helped to gain acceptance & broaden user base
- GUTS book informed writing of EFSA opinion
- Influential review paper on sub-lethal TKTD modelling & ecotoxicology
Ring test conclusions

1) Reduce user induced error and variability
 - By standardising user choices
 - Treatment of time-variable exposure
 - Initial values / priors

2) Standardise computational approaches
 - By developing a user-friendly, robust software
 - Parameter search algorithm
 - Numerical solvers
 - Bayesian vs Frequentist framework
Additional lessons

1) Freely available GUTS implementations (e.g. Matlab, R, Mathematica, Python) require programming skills to use → not user-friendly

2) The implementations that have a user-friendly GUI (e.g. DELPHI, EasyGUTS) are owned by a company → this stops uptake by regulators
Potential uses within REACH

<table>
<thead>
<tr>
<th>Application</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil pollution assessment</td>
<td>Can assess time-variable exposure</td>
</tr>
<tr>
<td>REACH regulation, Section 1.5 of Annex XI: Grouping of substances and read-across</td>
<td>Predict toxicity of untested substances because model parameters can be read-across</td>
</tr>
<tr>
<td>REACH chapter R.6: qsars and grouping of chemicals, R.6.2: Guidance on the Grouping of Chemicals, R.6.2.1: Explanation of the chemical category approach</td>
<td>Read-across of toxicity data with GUTS can be based on the category or the analogue approach</td>
</tr>
<tr>
<td>REACH Endpoint specific guidance R.7b</td>
<td>Calculate LC50 (and LD50) values for any exposure duration.</td>
</tr>
<tr>
<td>REACH, R.10.3.3 Calculation of PNEC for water in the case of intermittent releases</td>
<td>GUTS explicitly accounts for organism recovery and the temporal aspects of toxicity. Its application improves the assessment of intermittent release scenarios.</td>
</tr>
<tr>
<td>REACH: Endpoint specific guidance R.7b, R.7.8.5 Conclusions for aquatic pelagic toxicity and integrated testing strategy (ITS).</td>
<td>GUTS can help with the extrapolation of toxicity across species. Within reach that could support the integrated testing strategy.</td>
</tr>
</tbody>
</table>
Ecotoxicology: missing theory

<table>
<thead>
<tr>
<th>Macroscopic scale</th>
<th>Physical chemistry</th>
<th>(Eco)toxicology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect gas</td>
<td>$p \times V = \text{constant}$ (Boyle’s law)</td>
<td>Generic organism stress $= \frac{1}{C_T} \times \max(0, C_V - C_0)$ (DEBtox)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molecular scale</th>
<th>Kinetic model of gases</th>
<th>Cellular pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random motion</td>
<td>Size negligible</td>
<td>Reaction networks</td>
</tr>
<tr>
<td>Elastic collisions only</td>
<td></td>
<td>-omics</td>
</tr>
</tbody>
</table>

Emerges

Missing theory

Ashauer & Jager 2018
Toxicodynamic parameters & mode of action

$C_{\text{water}} \rightarrow C_{\text{internal}} \rightarrow \text{Survival}$

Toxicodynamic parameters cluster according to mode of action!

→ Biochemistry (MoA) is reflected at organism level (TD parameters)!

The challenge

Macroscopic scale

Molecular scale

DEBtox parameter (organism)

Cellular bioassay response

DEBtox organism

Reserve

Growth

Maturity & Reproduction

Research programme

Cellular bioassays
- In-vitro, cell based toxicity tests
- High-throughput
THANK YOU!