ICCE 2023, 13 June 2023, Venice

What can we learn from biodegradation of natural polymers for regulation?

Fraunhofer

💹 Fraunhofer

ITEM

IME

Stefan Hahn, Dieter Hennecke

« Four major challenges have been identified for assessing polymer biodegradation: lack of standardization, long duration required, demanding analytical methods, lack of a framework « Albright and Chai

Environ Sci Technol 55 (2021),11476-11488

« RAC recommends that additional research is undertaken to explore and understand the applicability of REACH Annex XIII half life criteria to particulate materials «

ECHA/RAC/RES-O-0000006790-71-01/F ("RAC Opinion"), 11. Juni 2020

© Fraunhofer ITEM

Background Types of polymers

Properties

- Structural
- Morphological
- PC data: water solubility, density, ...
- Behaviour: thermoplastic, thermoset, elastomere

Groups

- Biodegradable and non biodegradable plastic
- Fossil-based and biobased

Material coordinate system of plastics according to European Bioplastics (2018)

Background Types of polymers

Properties

- Structural
- Morphological
- PC data: water solubility, density, ...
- Behaviour: thermoplastic, thermoset, elastomere

Groups

- Biodegradable and non biodegradable plastic
- Fossil-based and biobased

Material coordinate system of plastics according to European Bioplastics (2018)

Background Natural polymers

Type and properties

- Often polysaccharides with weak α-glycosidic bonds or stronger β-glycosidic linkages,
 - starch, cellulose, ...
- But also more complex structures:
 - hemicellulose, lignin, cutin, chitin,...,
- Natural rubber
- Crystalline, semi-crystalline or amorphous
- Often insoluble
- Hydrophilic but also hydrophobic

Environmental fate of polymers Natural polymers

Occurrence and distribution

- Soil
 - Top soil
 - Amount and type depends on vegetation, climate, etc.
 - Humification, humic acids
 - Mineralization takes often several years
- Aquatic
 - Deposit to sediment
 - Particle tansport with sediment

Table: Components of natural materials (%dry materials)

	Wheat straw	Spruce	Birch
Lignin	11-26	29-34	24-26
Cellulose	32-45	38-47	35-44
Hemicellulose	20-45	18-22	26-30
Starch	0-3	-	-

adapted from Zhang L, Larsson A, Moldin A, Edlund U (2022) Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Industrial Crops and Products, 187

Environmental fate of polymers Natural polymers

Information on degradation using standard tests (OECD, ISO, ASTM)

- OECD 301B (McDonough et al. 2017), 125 500 μm
 - Jojoba wax, beeswax > 60% in 28 days
 - Walnut shells < 10%</p>
- Aquatic
 - ISO 14851, 14852 or 14853
 - Test period typically not exceeding 2 month
 - Cellulose as reference
 - validity criterion > 60% at the end
 - usually > 70% in 28 days

- Soil
 - ASTM 5998, ISO 17566
 - Cellulose as reference
 - ASTM > 70% in 6 month
 - ISO > 60% at plateau or at end (6 month)
 - e.g. Gomez and Michel (2013)
 - Other natural polymers or materials significantly lower degradation rate

Environmental fate of polymers Natural polymers

Information on degradation using non-guideline studies

Lignin

- e.g. Polman et al 2020, Thevenot et al 2010, Kögel-Knabner 2002
- Laboratory 19-60% degradation in up to 2 years
- Field studies: degradation up to 5 years
- Fungi

Cutin

- e.g. Kolattukudy 1981, Heredia-Guerrero et al 2017
- Extracellular polymer
- Enzymatic hydrolysis (cutinase) as an important pathway
- Fully hydrolyzed by soil microorganisms in a period of 3–8 months

Environmental fate of polymers Distribution and Degradation pathway of polymers

Processes for polymer (bio)degradation

- Natural and synthetic polymers undergo several processes
- Starting point of polymer fragmentation and degradation is often photolysis and/or hydrolysis
- Sequential degradation of chain length expected
- Four steps of polymer (bio)degradation:
- i. biodeterioration
- ii. depolymerisation
- iii. bioassimilation
- iv. mineralisation

Taken from:

Haider TP, Volker C, Kramm J, Landfester K,Wurm FR (2019) Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew Chem Int Ed, Volume: 58, Issue: 1, Pages: 50-62,

First published: 04 July 2018, DOI: (10.1002/anie.201805766).

Environmental fate of polymers Distribution and Degradation pathway of particles

Solid particles

- 1. Disintegration or fragmentation of particles
- 2. Change of surface properties
- 3. Surface erosion or bulk erosion
 - Bulk erosion, e.g. hydrolysis
 - Small catalysts (e.g., organic acids) or reagents (water) diffuse into polymer systems
 - The number of particles will change but not the total mass of the particles
 - Surface erosion, e.g. enzymatic degradation
 - The size of the particles will change but not the number of the particles

First published: 04 July 2018, DOI: (10.1002/anie.201805766).

© Fraunhofer ITEM

Take Home Message

What can we learn from natural polymers?

Contact

Dr. Stefan Hahn Division Chemical safety assessment and toxicology Tel. +49 511 5350-326

<u>stefan.hahn@item.fraunhofer.de</u>

Fraunhofer ITEM Nikolai-Fuchs-Straße 1 30625 Hannover www.item.fraunhofer.de

Acknowledgements

Research team

Dieter Hennecke, Judith Klein, Michael Klein (Fraunhofer IME) Graham Whale (Whale Environmental Consultancy Ltd) Chris Hughes, Megan Griffiths, Chesney Swansborough, Eleonore Delouvrier, Emma Pemberton, David Brown (Ricardo)

CEFIC LRI and the Monitoring team

Thank you for your attention!