ChimERA: Coupling exposure and effects into a predictive integrated framework for risk assessment

Frederik De Laender¹, Karel P.J. Viaene¹, Antonio Di Guardo², Hans Baveco³ and Paul van den Brink³,⁴

¹Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Belgium, frederik.delaender@UGent.be; ²Department of Chemical and Environmental Sciences, University of Insubria, Italy; ³Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen University and Research center, The Netherlands; ⁴Alterra, Wageningen University and Research center, The Netherlands;

Introduction

Current ecological risk assessments (ERA)
- Environmental realism?
- Ecological relevance?
- Methodological accuracy?

Challenges for current ERA practices
- Exposure not constant in time and space
- Multiple stressors
- Recovery
- Interactions between species

Modelling can play a key role in meeting these challenges

Objectives

Current models
- Not directly linked to fate and exposure models
- Focus on one population

ChimERA
Integrate exposure and effect models for into a new ecological risk assessment tool

Approach

1. **Development of ChimERA: Coupling of**
 - Multimedia Fate and Exposure model
 - Multiple population models

2. **Testing and Calibration**
 - Key processes
 - ChimERA model

 Dedicated experiments
 Mesocosm data

3. **Scenario analysis and risk assessment**
 - Simulations of environmentally realistic stressor mixtures
 - Continuous discharges
 - Continuous discharges + pulse
 - ...
 - Identification of scenarios that lead to highest risk
 - Input from experts through workshop series

Figure 1: Structure of the integrated ERA model ‘ChimERA’, composed of sub-models for chemical fate & exposure, and individual (TK/TD), population (IBM) and community-level (food web model) effects. Red arrows represent contaminant flows, white arrows are mass/individual flows and black dashed lines indicate dependence during computation.

Figure 2: Scenario analysis in WP4: Red arrows are chemical fluxes, dark blue arrows are water fluxes, light blue arrow is migration.

Acknowledgements: This work is part of an ECO19 project granted to Ghent University, Alterra and Wageningen University, and the University of Insubria by the Cefic LRI program. Frederik De Laender is a postdoctoral research fellow from the Research Foundation Flanders (FWO)