

Coupled individual based models as a new tool to predict ecological effects in multi-species systems

Karel P.J. Viaene¹, Andreas Focks², Hans Baveco², Paul van den Brink^{2,3}, Frederik De Laender⁴, Colin R. Janssen¹

Materials and Methods

Generic model parameters

Initial size (m) Maximum size (m) Growth rate (d-1) Background mortality Days until starved

Age maturation Age first reproduction Maximum offspring Reproduction events

Modelling competition

Ingestion

Growth

Reproduction

Example

Modelling toxicity

$$Mortality = \frac{1}{(1 + e^{-slope * (\ln x - \ln LC_{50})})}$$

Flow chart of the processes in the IBM that an individual goes through each time step. Max repro = maximum reproduction.

Results & Discussion

Current status

> D. magna: superior competitor

> Extinction of *B. calyciflorus* is postponed in this scenario

> B. calyciflorus dominates

> D. magna outcompeted

Conclusions

Realistic dynamics (competition and chemical effect) can be modelled using generic model parameters Concentration-response functions seem sufficient to model pyrene toxicity **Challenges:** predator-prey relationships + coupling >2 species

Contact: Karel. Viaene@Ugent.be

(www.cefic-lri.org) (project code: LRI-ECO19)

48h LC₅₀

