Project overview DRESS
DeRmal Exposure aSSessment Strategies

B9: Characterising the nature of dermal exposure from consumer products and articles
Background

Estimating **realistic** dermal consumer exposure via modelling is difficult due to:

– Lack of appropriate models featuring realistic exposure estimates from the use of consumer products and articles

– Conservatism of tier 1 models and lack of data on parameters for dermal exposure, for instance

 • Defaults
 • Databases on dermal transfer factors (thickness films,...)
 • Use patterns
 • Parameter variability
Objectives DRESS project

• Identification of key consumer products and articles for which demonstration of safe use is most challenging
• Identification of those dermal exposure determinants that benefit the most from data generation, including:
 – Habits and practices of consumers
 – Transfer factors (migration rates, thickness of contact films, ...)
 – External dermal exposure
• Identification of the main knowledge gaps in these exposure determinants and ways to fill them
• Perform experiments to fill these data gaps
• Integrate the information collected and data generated in a refined dermal exposure strategy
• Demonstrate this refined strategy in case studies
DERMAL exposure

- Fingertips
- Direct

- Hands
- Occasional
- Unavoidable

- Deposition on surfaces
- Indirect

- Body
- Frequent
- Intended

- Feet
- Unavoidable
Inventory

From mapping of processes (conceptual framework)

Developing model equations & data parameterization

* Existing dermal exposure models (consumers & workers)
* Literature search:
 - Foundations exposure parameters
 - Available exposure data

Focus on selected group of articles & products
Data collection

Focus on articles, refinements compared to ECETOC TRA model
- Consumer survey
- Experimental work
 - Migration \(\rightarrow\) release from articles
 - Transfer \(\rightarrow\) surface wipes

Migration: Release (rate) of a substance from an article; substances diffused from the matrix of the article to bioavailable amounts in the contact volume layer; movement of substance from within the matrix into outer boundary

Transfer: The mass rate of substance transferred from surface (i.e. after migration) to skin
Consumer Survey

• Online questionnaires, participants recruited from IPSOS panel

• Textiles, PVC flooring and paper articles, covering in total about 20 specific articles.

• The questionnaire included dedicated questions about penetration of the articles in their everyday life, frequency and duration of contact with specific articles, use context and habits.

• Completed by 9000 individuals (> 18 years) from 6 EU countries (Czech Republic, Germany, Spain, Poland, Sweden, UK).
Migration experiments

Initial concentration - C_0 (µg/cm³)

Surface concentration at $t \sim 0$ (µg/cm²)

Diffusion coefficient (m²/s)
Transfer experiments

Black dots: dry cotton wipes
Grey dots: wipes with artificial sweat
White dots: wipes with methanol
Approach Guidance

- Focus on articles
- ECETOC TRA as starting point
- Harmonized way for deriving defaults
- Taking into account all available information
 - Evaluation dermal exposure processes
 - Evaluation available models
 - Experimental data on migration and transfer
 - Migration: PVC flooring, printed paper, textiles
 - Transfer: PVC flooring, printed paper
 - Use patterns based on internet survey
 - PVC flooring, printed paper, textiles
Parameters ECETOC TRA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Change defaults</th>
<th>Clear definition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ingredient (PI)</td>
<td>+</td>
<td>+</td>
<td>Assumed to be available</td>
</tr>
<tr>
<td>Skin contact area (CA)</td>
<td>+</td>
<td>+</td>
<td>Variable and uncertain, difficult to estimate</td>
</tr>
<tr>
<td>Frequency of use (FQ)</td>
<td>+ *</td>
<td>+/-</td>
<td></td>
</tr>
<tr>
<td>Thickness of layer (TL)</td>
<td>(-) **</td>
<td>-</td>
<td>Variable and uncertain, difficult to estimate</td>
</tr>
<tr>
<td>Density (D)</td>
<td>(-) **</td>
<td>+</td>
<td>Assumed to be available</td>
</tr>
<tr>
<td>Transfer factor (TF)</td>
<td>+ *</td>
<td>+/-</td>
<td>Variable and uncertain, difficult to estimate</td>
</tr>
<tr>
<td>Body weight (BW)</td>
<td>(-) **</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

* For new subcategories
** When using equation instead of tool
Other relevant parameters

Refined exposure modelling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Related to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Released substance / transferable amount</td>
<td>Amount that can be transferred during exposure event</td>
<td>TL</td>
</tr>
<tr>
<td>Day of use</td>
<td>Day in which there is contact with the product / article (handling, unavoidable skin contact)</td>
<td>FQ</td>
</tr>
<tr>
<td>Exposure event</td>
<td>One more or less continuous period of handling / contact with the material; more than 1 event / day</td>
<td>FQ</td>
</tr>
<tr>
<td>Contact</td>
<td>Actual contact of bare skin with article without any material/air in between (opportunity transfer)</td>
<td>FQ, TF</td>
</tr>
<tr>
<td>Number of contacts</td>
<td>Number of times separate period of contact between skin and article (per event or day of use)</td>
<td>FQ, TF</td>
</tr>
<tr>
<td>Duration of exposure</td>
<td>Duration of exposure (short vs prolonged); released substance considered duration-depended</td>
<td>TL</td>
</tr>
<tr>
<td>Surface area article in contact with skin</td>
<td>Surface area of article that comes into contact with skin during an exposure event / day of exposure</td>
<td>CA</td>
</tr>
</tbody>
</table>

27/11/2014
Parameters ECETOC TRA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>New general default(s)</th>
<th>Article-specific defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ingredient (PI)</td>
<td>Per category 0.1 – 0.5</td>
<td>No Assumed available</td>
<td>Assumed available</td>
</tr>
<tr>
<td>Skin contact area (CA)</td>
<td>Per category</td>
<td>Yes - Gender specific - For body parts not in TRA</td>
<td>Assumption to be made by exposure assessor</td>
</tr>
<tr>
<td>Frequency of use (FQ)</td>
<td>1/day</td>
<td>Yes: <1 for articles with non-daily use</td>
<td>Yes (based on time activity patterns)</td>
</tr>
<tr>
<td>Thickness of layer (TL)</td>
<td>0.01 / 0.001 cm</td>
<td>No</td>
<td>No; other approaches</td>
</tr>
<tr>
<td>Density (D)</td>
<td>1 (g/cm³)</td>
<td>No Assumed available</td>
<td>Yes Assumed available</td>
</tr>
<tr>
<td>Transfer factor (TF)</td>
<td>1 (100%)</td>
<td>No</td>
<td>Yes, indicative</td>
</tr>
<tr>
<td>Body weight (BW)</td>
<td>10 / 60</td>
<td>10 / 65 (gender / age)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Alternatives – Additional parameters

• ECETOC TRA: Probably focused on articles with one long duration event; need additional approach for articles with typically short, frequent contacts

• Interaction between number of contacts (n_c), duration of exposure (t) and surface area of article in contact with skin (SA)
 – Number of contacts per event can be high
 – Non-linear increase of exposure with increase of duration (↓ transfer)
 • Max. loading of skin
 • Limited migration
 – Assumption $CA = SA$ not always conservative

• $t = t_c \times n_c$

• $SA = SA_c \times n_c$
 – $SA = SA_{new} \times SA_c \times n_c$
 – SA_{new}: between 1 (all contacts with new surface) and ~0 ($1/n_c$; all with same surface)
1. Constant contact situations

- $t_{exposure} = t_{contact}$, e.g. clothing, bed linen
- t_c and CA considered most important
- CA as proxy for SA
 - small number of contacts, all with same surface
- $DE = (PI \times TL \times D \times CA \times TF \times DF \times 1000) / BW$
 - $DF = \text{duration factor, 0-1}$
 - $1 =$ reasonable worst case (e.g. 18 hr. for clothing)
 - 8 instead of 18 hr. $\rightarrow 8/18 = 0.44$
2. Many short duration contact situations

- $t_{\text{exposure}} >> t_{\text{contact}}$, e.g. children playing, reading newspaper
- Surface area article in contact with skin proxy for ‘intensity of exposure’
- $DE = \frac{\pi \times TL \times D \times TF \times SA \times 1000}{BW}$
Alternatives – Additional parameters

• Washing / cleaning of articles by consumers (W)
 – Occurs regular for some articles groups
 • E.g. clothing, kitchen, floors
 – Influences transferrable amount: ↓
 • W between 0 and 1
 – Although relevant, no defaults for W could be derived (article-substance specific information if available) on dermal exposure of consumers
 – \((DE = (PI \times TL \times D \times CA \times TF \times W \times 1000) / BW) \)
Alternatives - Release

• TRA: \[DE = \left(\frac{PI \times TL \times D \times CA \times TF \times 1000}{BW} \right) \]

 = release (per unit surface of article during exposure event ‘ASRA’)

• Refinements of ‘release’ estimates by refining PI, D & TL?

 PI & D: yes
 TL: ??

• PI and D do not have an independent role in the DE release
• Refinements in PI & D possible, but always in combination with ‘TL’
• Uncertain about validity of TL defaults

→ Alternative approaches to avoid uncertainly about TL
→ Release

27/11/2014
Alternatives - Release

- Tiered approach amount of substance released from article during exposure event
Tier 1: Diffusion based model

Based on physical concept of molecules moving within a matrix

Concept of diffusion modelling, applied in fields of

- Migration of substances from food packaging to food
- Emissions from building materials to indoor air
- Paper of Delmaar et al. 2013 (Regul. Pharm. Tox.): ‘Alternative screening tool for dermal exposure to substances in articles (consumer exposure)’
- Complete diffusion equation → simplified diffusion based model

\[
\frac{dA}{dt} = S \times D_{diff} \times \left. \frac{\partial C}{\partial x} \right|_{\text{surface}} \quad A_s(t) = C_0 \times \sqrt{2 \times D_{diff} \times t}
\]

Diffusion coefficient

- Experimentally determined (from extraction curves in methanol) OR
- Estimates from \(MW \), matrix specific coefficients \(A_p \) and \(T \) (Holmgren et al. (2012):

\[
D_{diff} = \exp \left(A_p - 0.1351(Mw)^{2/3} + 0.003Mw - \frac{10450}{T} \right)
\]
Alternatives - Release

Tier 2: Artificial sweat extractions

- Empirical method; combining both aspects of diffusion and solubility in (artificial) sweat
- Experimental data need; no modelling approaches to estimate available, besides some rule of thumbs for textiles

<table>
<thead>
<tr>
<th>Substance category</th>
<th>Migration rate *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Hydrophilic textile auxiliary</td>
<td>2 %</td>
</tr>
<tr>
<td>Hydrophobic textile auxiliary</td>
<td>0.1 %</td>
</tr>
</tbody>
</table>

*Migration rate is defined by Krätze and Platzek (2004) as the ratio of artificial sweat extractable amounts to the initial content of substance in the textile, at a fixed time t (60 min.).

27/11/2014
Dermal exposure assessment strategy

TRA based approach

OPTION 1: TRA equation + TRA defaults

OPTION 2: TRA equation + specific values instead of defaults
(+ population variability)

OPTION ‘Additional’ (1*,2*,3*): Additional parameters:
- number of contacts
- article surface area
- duration factor
- skin contact factor
- washing/cleaning factors

Alternative approach

OPTION 3: alternative approach for 'release from article' instead of TRA concept 'thickness of layer'

3A: mass balance
3B: diffusion model
3C: leachable amount

additional factors might be used in combination with either the TRA-based approach or the alternative approach for assessing release from article
Case study – Textile DMF in polyester T-shirt

OPTION 1: default TRA

OPTION 2: TRA & specific values

OPTION 2*: TRA & specific values - washing reduction

OPTION 3A*: mass balance & specific values

OPTION 3B*: diffusion based model & specific values

OPTION 3C*: sweat extractable amount & specific values

Systemic exposure (mg DMF/kg bw/day)

adult men
child two years old
Case study – Printed paper
DB 360 in home printed paper
Case study – PVC flooring
DEHP in PVC flooring
Remaining gaps

Estimating release from articles

• Moving from assumption (‘TL’) towards chemical-physical based models
• Diffusion based modelling → high (unrealistic) estimates → ignoring other limiting factors: solubility, saturation (absence of removal)
 • Towards model combining diffusion with solubility and removal?
 • Integrated approach external exposure and internal dose?
 • Experimental testing (parallel: experimental testing is the standard for generating realistic emissions from building materials to indoor air)

Transfer factors

• Moving from defaults towards experimental testing based on real articles → 1000-fold reduction (NB: differentiation between release and transfer)
• Lack of generic rules to estimate TF → Consensus on design experiments
• Experiments log Kow → not enough support do derive rules for TF (below 1)

27/11/2014
Remaining gaps

Use habits and practices

• Use data of **products** \rightarrow dose
• Use data of **articles** \rightarrow no linear relationship with dose (dose is also affected by CA, SA, release)
• Online questionnaires related to frequency, duration, way of handling articles \rightarrow useful for derivation of defaults for some parameters (frequency) and relevance additional factors (washing before 1st use), also relevant for deriving an exposure scenario
• For other behavioural factors: observational studies needed instead of online questionnaires, e.g.
 – Number of contacts PVC flooring
 – Surface area of contacted PVC flooring
Available information

Any questions?

Contact:

• VITO – Katleen De Brouwere
 katleen.debrouwere@vito.be
 https://vito.be/en

• TNO – Suzanne Spaan
 suzanne.spaan@tno.nl
 http://www.tno.nl

• NRCWE – Per Axel Clausen
 pac@arbejdsmiljoforskning.dk
 http://www.arbejdsmiljoforskning.dk/en

• IPSOS – Elena Lucica
 Elena.Lucica@ipsos.com
 http://www.ipsos.com