Addressing uncertainty in sub-cooled liquid property estimation
Trevor N. Brown1,2, James M. Armitage1,3, Jon A. Arnot1,3
1 trevor.n.brown@gmail.com, TNB Research, Halifax, Canada
2 ARC Arnot Research & Consulting, Inc., Toronto Canada
3 University of Toronto Scarborough, Toronto, Canada

Introduction

Chemical partitioning properties, e.g., solubilities and equilibrium partition coefficients, are important parameters for multimedia modeling and other risk assessment applications. For chemicals that are solids at system temperature, the appropriate reference state for internally consistent chemical partitioning properties are sub-cooled liquid properties. Partitioning properties of the solid have to be adjusted to sub-cooled liquid property values using the Fugacity Ratio (F). For example, solubility in water: $S_{sub} = S_{ref}/F$

Van't Hoff Approximation
\[
\log F = \frac{-\Delta S_m}{2.303R} \frac{Tm}{T}
\]

Hildebrandt Approximation
\[
\log F = \frac{-\Delta S_m}{2.303R} \ln \frac{Tm}{T}
\]

QSARs - Methods, Results and Discussion

T_m - Melting Point QSARs

A dataset of 2884 chemicals from the curated Bradley T_m database[2,3] was split into the primary training and validation datasets. The much larger Enamine database[2,4] was used as an additional external validation dataset. A fragment-based QSAR was constructed as described in the literature[5,6,7]. Two thirds of the Bradley dataset (1922 chemicals) were used as a training dataset, and the remaining 962 chemicals were used as an external validation dataset. For comparison the USEPA program EPISuite was also used to predict T_m for the external validation dataset. These results are shown in Figure 1.

The much larger Enamine dataset was used to assess the models performance in the context of high throughput screening. The results are shown in Figure 2.

For the validation chemicals from Bradley dataset the IFS models performance in the context of high throughput screening. The results are shown in Figure 1.

The rigorous equation for calculating F has terms that include the entropy of fusion at the melting point (ΔS_m) and heat capacity. Two different assumptions about the heat capacity can be made resulting in the approximations below.

If Walden’s Rule ($\Delta S_m = 56.5 \text{ kJ/mol}$) is assumed to be valid, F can be estimated using only the melting point (T_m).

Another important application of the Fugacity Ratio is in the calculation of chemical activity, which has uses in chemical risk assessment. For example see Posters WP132 and WP138.

Figures 1, 2 and 3 show the comparison of the new IFS predictions, compared with the predictions summarized in the supporting information of Jain et al 2004.

The predictive power of the two QSARs superficially appears to be comparable. However, Jain et al 2004 do not discuss training and validation datasets, so it is likely that the model results shown in Figure 3A were fitted to the data, whereas Figure 3B shows the results of an external validation.

The simple QSAR presented by Jain et al 2004 was reimplemented as a fragment based model, but neglecting molecular symmetry effects. This implementation gave results slightly better than those presented in the original publication.

ΔS_m - Entropy of Fusion and Melting Point QSARs

Jain et al 2004[1] transcribed a database of experimental ΔS_m values, 1585 of these were extracted with structural information in the form of SMILES. A fragment-based QSAR for ΔS_m was constructed following the same procedures as for T_m. 1596 and 529 chemicals were assigned to the training and validation datasets respectively.

Figure 3 shows the comparison of the new IFS predictions, compared with the predictions summarized in the supporting information of Jain et al 2004.

The predictive power of the two QSARs superficially appears to be comparable. However, Jain et al 2004 do not discuss training and validation datasets, so it is likely that the model results shown in Figure 3A were fitted to the data, whereas Figure 3B shows the results of an external validation.

The simple QSAR presented by Jain et al 2004 was reimplemented as a fragment based model, but neglecting molecular symmetry effects. This implementation gave results slightly better than those presented in the original publication.

Additional future work will attempt to combine important physicochemical properties such as F, T_m, ΔS_m, and possibly S_{sub} within a single integrated QSAR.

Finally, future work will also include case study applications and comparison of methods for estimating chemical activity and for developing internally consistent QSARs for predicting chemical solubilities and partition coefficients.

Conclusions and Future Work

The poor performance of both QSARs for the Enamine T_m dataset is because the database contains many chemicals that are outside of the chemical domain of their training datasets.

The Bradley dataset contains is considered high quality, but this usually also means well-studied and therefore the chemical domain covered by these data are limited.

Future work will focus on integrating high quality and lower quality data in a weighted regression model. This will use all available data and expand the model domain of applicability.

References