The Bioaccumulation Assessment Tool (BAT)

Jon Arnot, ARC (PI)

ECHA PBT EG September 25, 2018

Presentation Overview

- Rationale & Objectives
- The BAT WOE Approach
 - Relevance
 - Reliability
 - Strength
- BAT Concepts
- Examples of Input and Output

Project Overview

Timeline:

Initiated: Fall 2016

Completed: September 2018

Available: www.arnotresearch.com & www.cefic-lri.org

BAT Research Team Members:

Jon Arnot, PhD

- James Armitage, PhD
- Liisa Toose, MSc
- Michelle Embry, PhD
- Karen Foster, PhD
- Lauren Hughes, MSc

Stakeholder Involvement:

BAT Advisory Team (BAT-AT) providing comments and suggestions

- Johanna Peltola-Thies and others (ECHA)
- Caren Rauert (UBA)
- Ian Doyle (UK Environment Agency)
- Naoki Hashizume (CERI)
- Yoshiyuki Inoue (CERI)
- Mark Bonnell (ECCC)
- John Nichols (EPA)

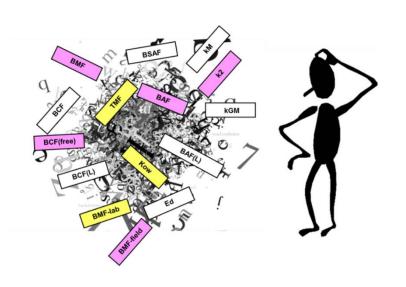
- Karen Eisenreich (EPA)
- David Tobias (EPA)
- Kent Woodburn (Dow)
- Sami Belkhiria (Dow)
- Sylvia Jacobi (Albemarle Europe sprl)
- Florian Schmidt (BASF)
- Marie-Helene Enrici (Solvay)

Rationale

Various...

1. Regulatory programs:

- REACH, TSCA, CEPA, CSCL, Stockholm Convention

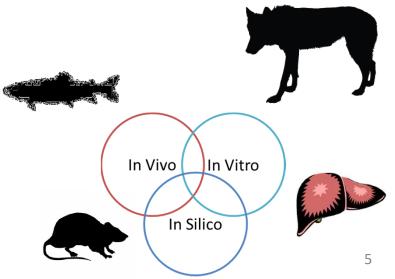

2. Metrics:

Kow, lab BCF, lab BMF, field BMF, field BAF, field TMF, etc

3. Criteria:

- 1, 500, 1000, 2000, 5000

- Weight of Evidence (WOE) approach suggested, e.g., REACH Annex XIII
- But <u>NO</u> organizational framework or defined implementation strategy for assessments -> "challenging"


General Project Objectives

Develop a user-friendly spreadsheet tool that can be used to:

- <u>collect</u>, <u>generate</u>, <u>evaluate</u> and <u>integrate</u> various lines of evidence (LOE) relevant to B-assessment (i.e., TK, ADME data streams)
- provide consistent and transparent results by means of a quantitative weight of evidence (QWOE) approach for aquatic and terrestrial B assessment
- inform B-assessment decision-making
- guide testing strategies

BAT QWOE

- Lines of Evidence (LOE)
 - In Vivo: BCF, lab & field BMF, BAF, TMF
 - In Vitro biotransformation → BCF, BMF, BAF
 - In Silico biotransformation → BCF, BMF, BAF & BCF-QSARs
- Relevance (score)
 - B metrics & source, e.g., lab BCF, field BMF, in silico BCF
- Reliability (score)
 - Data Evaluation Templates (DETs) based on standardized testing guidance → errors/uncertainty in LOE data source
- Strength (score)
 - Summary of LOEs and classifications ("nB", "B", "vB")

BAT Concepts - Aquatic

BAT-Aquatic Model Output Input **AIR** B metrics summary Phys-chem properties Study-generated LOEs Molar mass BAT-generated LOEs Kow(s) Fugacity ratios K_{tissue-water} Comparison against defined pKa (IOCs) thresholds Comparison against Biotransformation rates benchmark chemicals WATER In vivo In vitro → IVIVE Data reliability scores for · In silico SEDIMENT study-generated LOEs In vivo data (lab) ¹Plankton (various) ⁴Benthivorous fish (smelt) **QWOE** summary BCF & BMF ²Benthic invertebrate (various) ⁵Omnivorous fish (yellow perch) ⁶Piscivorous fish (salmonid) ³Planktivorous fish (alewife) Relevance Toxicokinetics (half-life) Reliability Strength In silico-QSARs Model-calculated B metrics under defined BCF conditions Overall summary BCF/BMF (lab), half-lives In vivo data (field) Report Generic lab BCF, BMF, half-lives **Figures** · BAF, BMF, TMF Generic field BAF, BMF, half-lives Collects LOE **Generates LOE Evaluates LOE Integrates LOE**

B metrics

Data Evaluation

Templates (DETs)

OWOE

BAT Concepts - Terrestrial

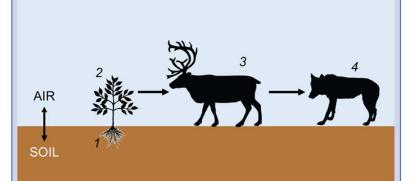
Input

Phys-chem properties

- Molar mass
- K_{OW}(s), K_{OA}(s)
- K_{tissue-water}
- pKa (IOCs)

Biotransformation rates

- In vivo
- In vitro → IVIVE
- In silico


In vivo data (lab)

- BMF
- Toxicokinetics (half-life)

In vivo data (field)

BMF, TMF

BAT-Terrestrial Model

¹Root vegetation (various) ²Foliage vegetation (various) ³Terrestrial herbivore (caribou) ⁴Terrestrial carnivore (wolf)

Model-calculated B metrics under defined conditions

- · BCF/BMF (lab), half-lives
- · Generic lab BCF, BMF, half-lives
- Generic field BAF, BMF, half-lives

Output

B metrics summary

- Study-generated LOEs
- BAT-generated LOEs
- Fugacity ratios
- Comparison against defined thresholds
- Comparison against benchmark chemicals

Data reliability scores for study-generated *LOE*s

QWOE summary

- Relevance
- Reliability
- Strength

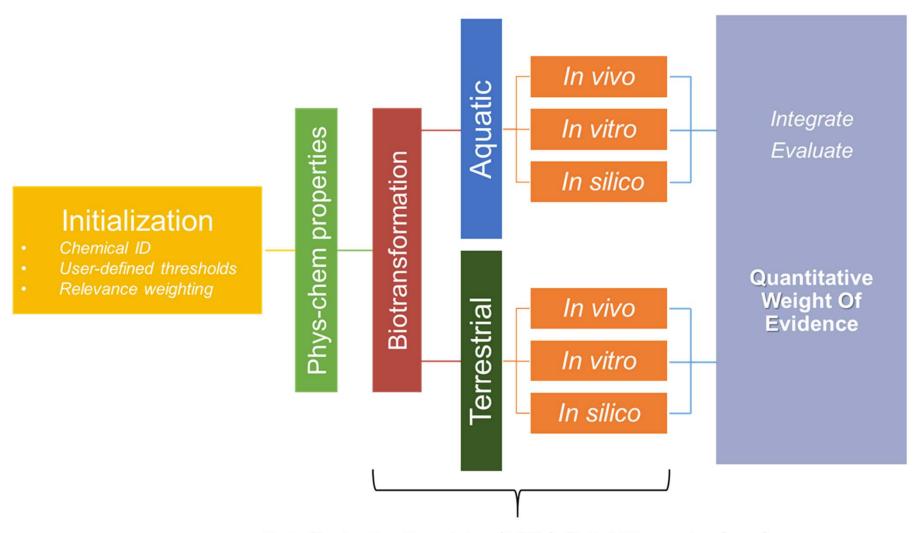
Overall summary

- Report
- Figures

Collects LOE

Generates LOE

Evaluates LOE

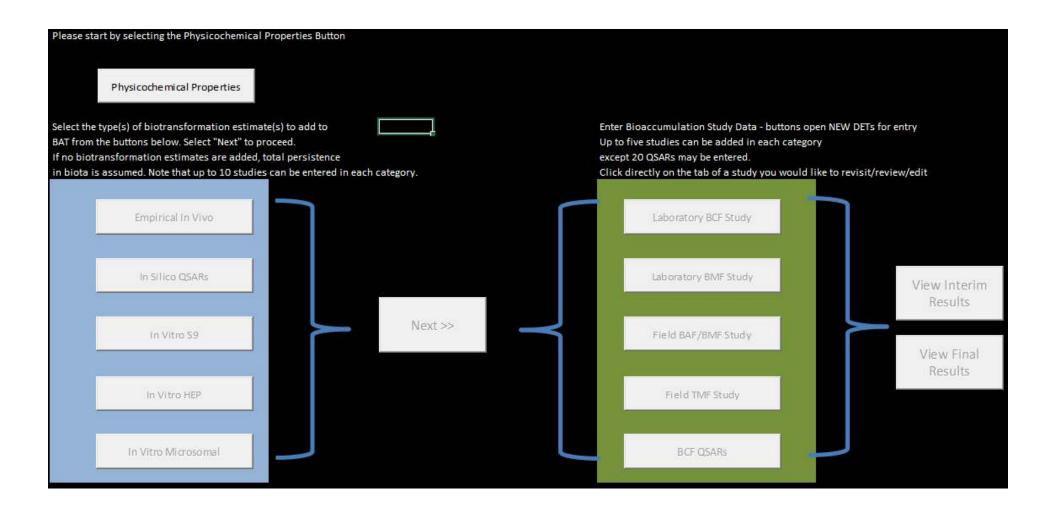

Integrates LOE

B metrics

Data Evaluation Templates (DETs)

QWOE

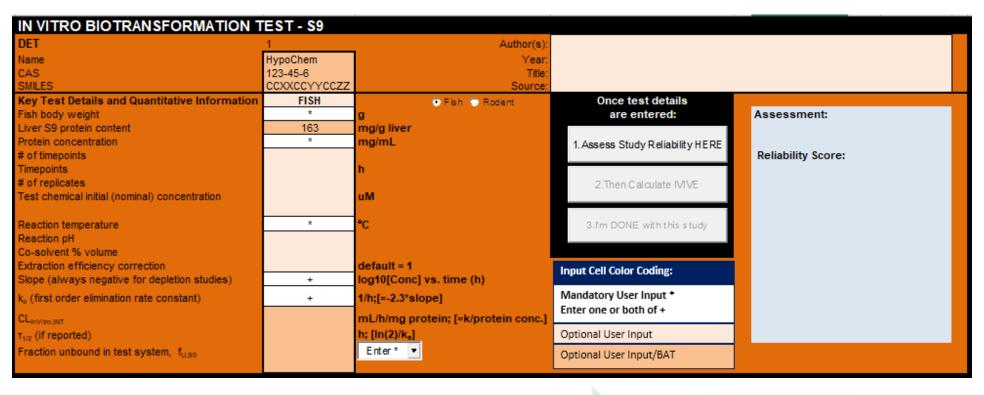
BAT General Workflow

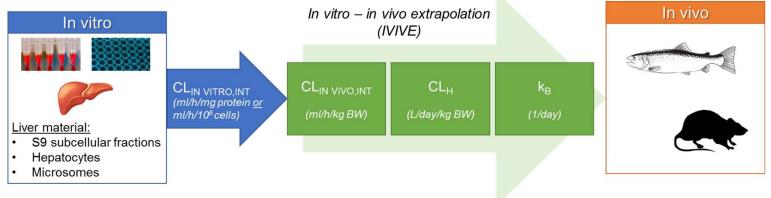


Data Evaluation Templates (DETs): Reliability scoring (user)

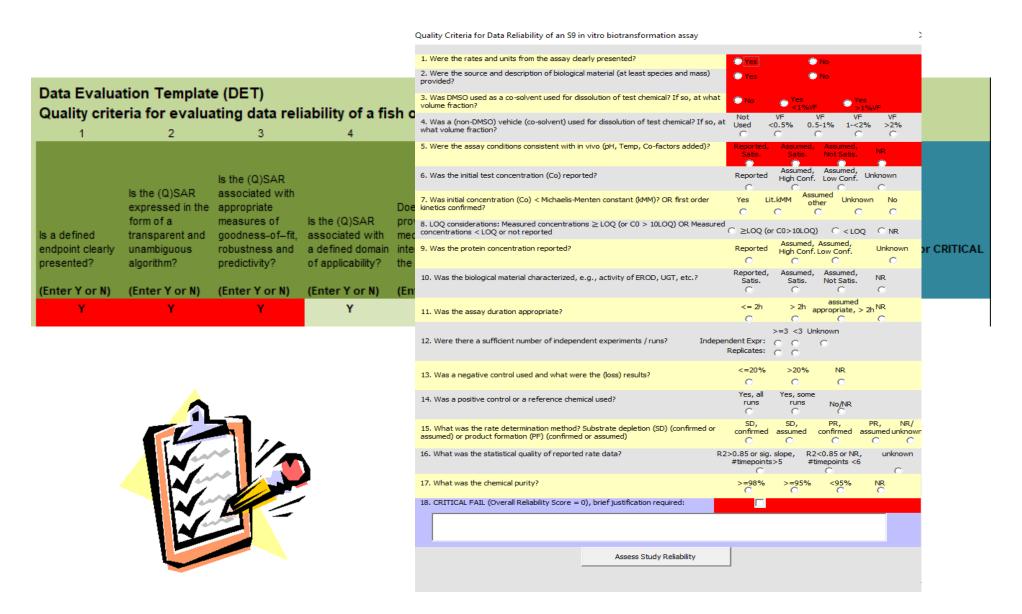
Initialization & Relevance

BAT Initialization									×
Chemical Name: CAS#: SMILES:					Neut	tral () Ionic	Initialize BAT	
Please Enter:	Assessor's Name Organization				Sele	ct Re		on Scenario Select nter Below:	
- Bioaccumulation	- Relevance Weighting						- Threshold Values		
Bioaccumulation/Bioconcentration			1	2	3	4	5	"B" "VB" Enter ▼ I Ara Enter ▼ I Ara	
BCF - Laboratory			•	•	•	•	•	Enter ▼ L/kg Enter ▼ L/kg	,
BAF - Field	•	•	•	0	0	•			
BCF - In silico	9	0	0	•	0	•			
BAF - In silico Biomagnification	WHY?								
BMF - Laborator	L	0	0	0	0		Enter ▼ kg/k	αg	
BMF - Field	•	0	0	0	0	•			
BMF - In silico		•	•	•	•	0	•		
Trophic Magnifica							Enter ▼		
TMF - Field		•	0	•	•	0	•		


"BAT Main" Page



Physical-chemical Properties


Physical Chemical Properties		×
Name: HypoChem CAS: 123-45-6 SMILES: CCXXCCYYCCZZ Neutral		Enter Data into BAT to calculate unknown values and go to Chemical Summary Sheet to review
Please complete the following fields:	Use biotic partitioning from	Coptional Inputs
Molecular Weight (g/mol) Water Solubility (mg/L)	© spLFERs © ppLFERs (optional) Note: Solute descriptors can be obtained from UFZ - LSER Database using the SMILES description	Solubility in octanol (mol/m³) Bovine serum albumen logKBSA Membrane-water
log(KOW, III-/III-)	Solute descriptors (ppLFER)	log(KMW, L/kg)
Choose ONE of the following Henry's Law Constant (Pa'm³/mol) log(KAW, m³/m³) log(KOA, m³/m³)	E S S S S S S S S S S S S S S S S S S S	log(KPOC, L/kg OC)

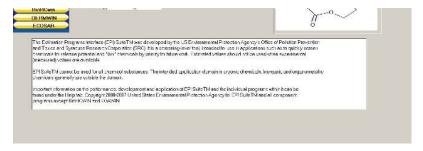
Biotransformation Rates, e.g. in vitro

Data Evaluation Templates (DETs)

Predicting *HL* from Chemical Structure: Quantitative Structure-Activity Relationships (QSARs)

Science of the Total Environment 470-471 (2014) 1040-1046

Contents lists available at ScienceDirect


Food and Chemical Toxicology

journal homepage: www.elsevier.com/locate/foodchemtox

Development of human biotransformation QSARs and application for PBT assessment refinement

Ester Papa a, *, Alessandro Sangion a, Jon A. Arnot b, c, d, Paola Gramatica a

OECD QSAR Principles 2007

Summary Results

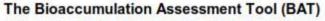
Chemical Identity

Chemical Name: HypoChem

CAS#: 123-45-6

SMILES: CCXXCCYYCCZZ

Neutral (0), Ionic (1): Neutral



Return to BAT-Main

Strongth of

Sample Report PDF

								Evidence:	0.78	0 B	0.22					
LOE	Туре	Study #	Eco	Org	Kinetic or Steady State	Lipid-	Grow- corr	рН	Quality Assessment, QC entries identified as key study deficits (QC = 0)	Min	Value	Max	fugacity ratio	Outcome	Relevance Weighting (0-5)	Reliability Score (%)
BCF	In Silico	1	Aquatic	Generic Lab	SS	Yes	No	7	BAT Estimate	6.59E+02	2.98E+03	1.35E+04	0.04	nB<5000**	3	8
BCF	In Silico	1	Aquatic	Generic Lab Fish	К	Yes	Yes	7	BAT Estimate	6.52E+02	3.06E+03	1.43E+04	0.04	nB<5000**	3	*
BAF	In Silico	1	Aquatic	Generic Low TL Fish	SS	Yes	No	7	BAT Estimate	6.10E+03	2.68E+04	1,18E+05	0.39	∨B>5000	4	2
BMF	In Silico	1	Aquatic	Generic Low TL Fish	SS	Yes	No	7	BAT Estimate	0.058	0.253	1.111	0.39	nB<1**	4	5
BMF	In Silico	1	Terrestrial	Wolf	SS	Yes	No	7	BAT Estimate	28.3	28.3	28.3	27.52	vB>1	4	-
BMF	In Silico	1	Aquatic	Generic Lab Fish	SS	Yes	No	7	BAT Estimate	0.081	0.368	1.666	0.32	nB<1**	4	+
BMF	In Silico	1	Aquatic	Generic Lab Fish	К	Yes	Yes	7	BAT Estimate	0.082	0.384	1.799	0.32	nB<1**	4	4
TMF	Field	1	Aquatic	Field	N/A	Yes	N/A	7	18 20 21 22	0.741	0.741	0.741	N/A	nB<1	5	75.64%
BCF	In Silico	1	Aquatic	Total water	N/A	N/A	N/A	7	6	1.68E+03	1.68E+03	1.68E+03	N/A	nB<5000	3	70.59%

developed by ARC Inc. with support from CEFIC-LRI

Prepared by: Jon

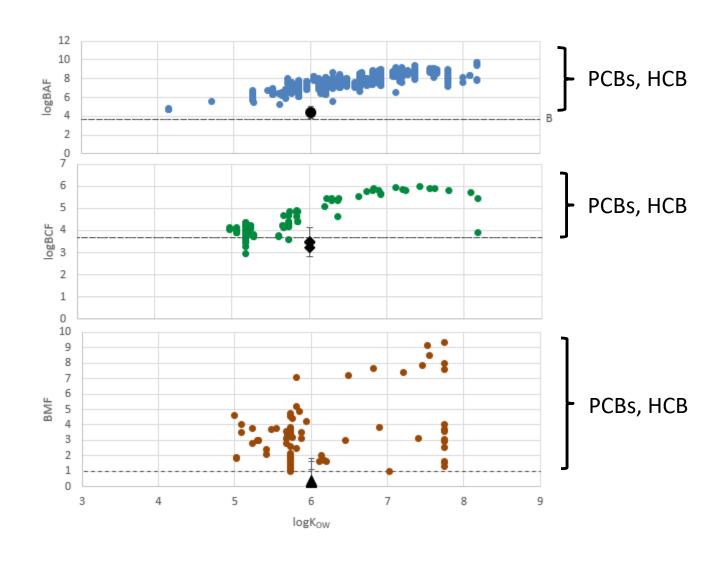
Organization: ARC

Report created on: 2018-09-11 14:19

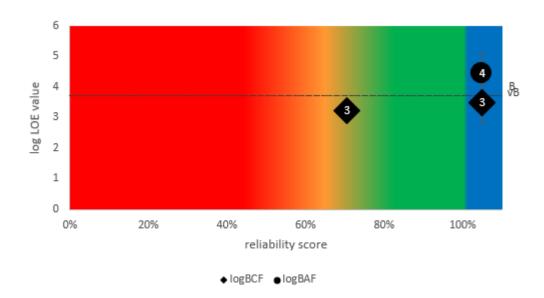
Bioaccumulation Assessment Report

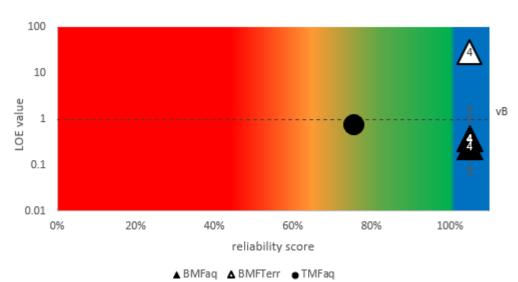
Project Summary

HypoChem CAS #: 123-45-6

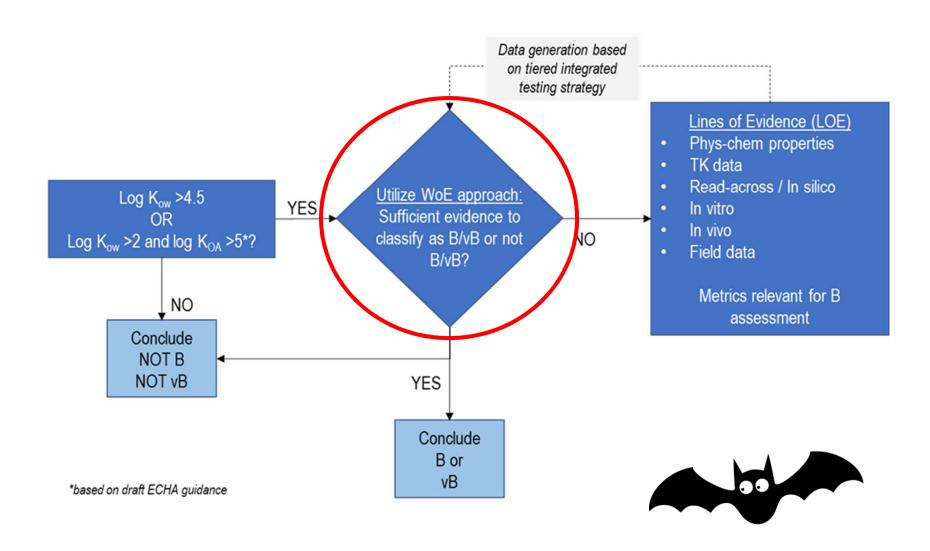

SMILES: CCXXCCYYCCZZ

Integrates:


- Various LOEs
- Relevance
- Reliability
- Strength
 - o Outcome: nB, B, vB



Summary Plots, e.g. benchmarking



Summary Plots, e.g. LOEs, reliability

Testing Guidance to Address Uncertainty

Summary

- The BAT provides a consistent and transparent QWOE framework for B assessment for aquatic and terrestrial organisms
- Reflects current "state of the science"; can continue to evolve with new standardized methods and approaches
- Can be used for:
 - "data rich" chemicals with multiple empirical LOE
 - "data poor" chemicals with only basic structural information
 - directing new studies to address uncertainty, if necessary
- Serves as an effective communication & educational tool
- Continued feedback after using the BAT is welcome...

Thank you

- The comprehensive user-manual and quick start guide are embedded in the BAT spreadsheet.
- A manuscript outlining the BAT is in preparation.
- The BAT & introductory videos are available on-line at:

www.arnotresearch.com www.cefic-lri.org

- A training course was held in Rome (May 2018) that included the BAT and in vitro and in silico methods for estimating biotransformation rates
- Please contact us if there is interest in additional training courses or workshops:

jon@arnotresearch.com membry@hesiglobal.org

